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Background: Significant enhancement of sub-barrier fusion cross sections owing to neutron transfer with positive
Q values was observed in many combinations of colliding nuclei. This degree of freedom has not yet been included
into the rigorous quantum coupled-channels (QCC) approach. However, the empirical coupled-channels model
with neutron rearrangement [Zagrebaev, Phys. Rev. C 67, 061601 (2003)] has already been successfully used in
several papers to reproduce and predict cross sections for sub-barrier fusion reactions of stable nuclei.
Purpose: The objective of this study is to combine the QCC approach and the empirical model to account for
additional channels of neutron rearrangement.
Method: Coupling of relative motion to collective degrees of freedom (rotation of nuclei and/or their surface
vibrations) are taken into account within the QCC approach. The probability of transfer of x neutrons with a
given Q value is estimated semiclassically.
Results: The proposed new model was successfully tested on a few combinations of fusing nuclei
40Ca + 90,94,96Zr, 32S + 90,94,96Zr, and 60,64Ni + 100Mo. The calculated fusion cross sections and barrier
distribution functions agree well with experimental data.
Conclusions: The model developed in this work confirms all the conclusions previously made within the
empirical coupled-channels model with neutron rearrangement [see Rachkov et al., Phys. Rev. C 90, 014614
(2014)]. Moreover, it has an advantage of a more reliable microscopic account for the coupling between relative
motion and the collective degrees of freedom. The proposed model can also be used to reproduce the structure
of the barrier distribution function. This is a step forward to a complete solution of the long-term problem of
accounting for neutron transfer channels in the QCC model.
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I. MOTIVATION

The process of nuclear fusion remains one of the most
intriguing and intensively studied phenomena, both theo-
retically and experimentally. The study of this process is
very important, for example, for synthesis of superheavy
nuclei and understanding of astrophysical nucleogenesis; it
casts additional light on the influence of different inelastic
excitations and/or breakup channels on the fusion cross
section, etc. Over the past decades, experimental sensitivity has
been tremendously improved, and the intensities of radioactive
beams were increased. This allowed, in particular, systematic
investigations of fusion of stable as well as exotic nuclei at
energies well below the Coulomb barrier. An interesting and
rather exiting phenomenon was found for some combinations
of fusing nuclei. Coupling of relative motion to other collective
degrees of freedom, such as the rotation of deformed nuclei and
their surface vibrations, is commonly thought to be the main
cause of strong enhancement of sub-barrier fusion. However, a
considerable body of experimental data reveals that additional
enhancement of the sub-barrier fusion cross section is due
to neutron rearrangement with positive Q values. This effect
can be easier observed if one compares sub-barrier fusion
cross sections for two close projectile-target combinations.
One of them allows neutron rearrangement with positive
Q values, whereas neutron transfer for another combination
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goes with negative Q values. The combinations ( 40Ca + 96Zr,
40Ca + 90Zr) [1] and ( 16O + 60Ni, 18O + 58Ni) [2] are good
examples of such kind. Coupling of relative motion to surface
vibrations of colliding nuclei describes quite well the fusion
cross sections for the 40Ca + 90Zr and 16O + 60Ni reactions,
but it is insufficient to describe additional sub-barrier fusion
enhancement for the 40Ca + 96Zr and 18O + 58Ni reactions
(see, e.g., Refs. [3,4] for detailed discussion).

The nucleon transfer in low-energy nucleus-nucleus colli-
sions can be described theoretically within the models based on
the first-order perturbation theory such as GRAZING [5] and
complex Wentzel-Kramers-Brillouin approximation [6]; in the
framework of the time-dependent Hartree-Fock (TDHF) the-
ory (see Refs. [7–9] and references therein); within the models
based on the time-dependent Shrödinger equation [10–12];
as well as in the dynamical approaches employing the
Langevin-type equations [13,14]. The whole dynamics of
the near-barrier fusion can be considered microscopically in
the TDHF theory [7,9]. At the same time, rearrangement of
a few valence neutrons only may significantly influence the
sub-barrier fusion probability. In this case, the semiclassical
approach used in this work can be a good approximation to
the fully microscopical treatment (see below).

The influence of the coupling to neutron transfer channels
on the sub-barrier fusion probability can be explained in the
following way [3]. At the approaching reaction stage the
valence neutron’s wave function, localized initially in one of
the nuclei, may spread into the volume of the other nucleus
(see, e.g., Refs. [7,9,11,12]) already before the colliding nuclei
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have overcome the Coulomb barrier. This process may go
with the energy profit which, in turn, may lead to a gain
in the kinetic energy of relative motion (energy lift). Thus,
neutron transfer (rearrangement) with positive Q values may
significantly influence the sub-barrier fusion dynamics, giving
a substantial increase of the barrier penetration probability.

Even a more pronounced effect of neutron rearrangement
was observed experimentally (see Refs. [15–23]) for the
reactions with neutron-rich weakly bound nuclei, such as
6He, with stable targets. The coupling to surface vibrations
and to rotation of heavy target in these cases are less
important because of a smaller size of the projectile. However,
rearrangement of neutrons at the approaching stage can lead
to a noticeable enhancement of sub-barrier fusion owing to
large positive Q values. Deep sub-barrier fusion of light
nuclei (including the exotic ones) can also be important for
astrophysical nucleosynthesis [11].

The cross sections of near-barrier fusion of nuclei and,
in particular, the sub-barrier fusion enhancement induced by
surface deformations or rotations of heavy deformed nuclei can
be properly described within the quantum coupled-channels
(QCC) model [24–29] or within the empirical coupled-
channels (ECC) model [30]. On the other hand, it is rather
difficult to include nucleon transfer channels in the rigorous
QCC approach. The problem occurs when, following the
standard coupled-channels method, the total wave function
is decomposed both over the collective (rotational and/or
vibrational) states and neutron transfer states. In such a decom-
position overcomplete and nonorthogonal basis functions are
used that requite complicated technique or certain simplifying
assumptions.

One of the first attempts to account for neutron rear-
rangement within the coupled-channels approach is made in
Ref. [25] where the well-known CCFULL code is described.
This is done by adding a phenomenological term responsible
for neutron transfers to the total Hamiltonian. It is assumed that
this term has the form factor similar to the one corresponding
to the vibrational mode. An adjustable coupling constant is
fitted to experimental data.

A series of works devoted to this problem was published by
Sargsyan and others (see, e.g., Refs. [31,32]). The approach
is based on the assumption that at the approaching stage of
the fusion process the neutron pair transfer can occur with a
certain probability, leading to a change in nucleon composition
of fusing nuclei. Thus a new pair of nuclei with different
collective properties and, hence, with different enhancement
of sub-barrier fusion can be formed.

In Refs. [12,33] an attempt to develop a fully microscopic
CC approach taking account of neutron rearrangement was
made. Following the idea of Refs. [34,35] the neutron rear-
rangement process is described basing on the decomposition
of the neutron’s wave functions over a set of two-center states
in combination with the TDSE method. Neutron transitions
to the two-center levels corresponding to different Q values
and a possible decrease of the initial two-center level are
considered. This may lead to a gain in the kinetic energy of
relative motion and, hence, cause an additional enhancement
of sub-barrier fusion. This approach is still under development.
It is noteworthy that simplified assumptions are used. For

example, the two-center excitation spectrum is assumed
to be a pure single-particle one; therefore, the transitions
only between single-particle states are treated. Even with
these simplifications, the computational scheme is still too
complicated and time-consuming.

In Ref. [3] neutron rearrangement was quite consistently
incorporated into the ECC approach using a semiclassical
approximation for transfer probability. This method is not
fully microscopic, but takes into account the main effects of
neutron rearrangement with positive Q values. The ECC model
with neutron rearrangement has already been successfully used
in several papers [3,4,36–38] to reproduce and predict cross
sections for the sub-barrier fusion reactions of stable nuclei.
We have recently published a paper [4] devoted to the study of
the influence of neutron rearrangement channels with positive
Q values on sub-barrier fusion. The main conclusion of the
paper is that a pronounced enhancement (visible above those
caused by the coupling to the collective vibrational and/or
rotational degrees of freedom) of sub-barrier fusion owing
to neutron rearrangement can be expected, if the following
necessary conditions are fulfilled: (i) large positive Q values
are present for one- and/or two-neutron transfer, while the
influence of the xn channels for x > 4 is negligible; (ii)
fusion enhancement owing to coupling to collective states is
relatively small, like in the case of fusion of light nuclei and
spherical magic or nearly magic nuclei. With regard to fusion
of light nuclei, there is an additional condition requiring the
neutron binding energies in the donor nucleus to be small (the
classical example is the fusion of light weakly bound nuclei,
like 6He). Note that all the calculations in Ref. [4], as well as
the QCC calculations without neutron transfer presented here,
were performed using an access-free web knowledge base on
low-energy nuclear physics (NRV) [28].

One of the main shortcomings of the ECC model is the
choice of the empirical distribution function of the dynamic
barrier heights [30] responsible for coupling of relative motion
to surface vibrations. The Gaussian approximation for this
function is assumed. This simplified choice often results in
visible deviation of the calculated cross sections from the
data at energies close to the Coulomb barrier. Even more
pronounced is the effect this has on the calculated so-called
barrier distribution function (∼d2(Eσfus)/dE2). In the ECC
model it is the function with one maximum (see Figs. 10(b)
and 10(d) of Ref. [4]) while the experimental data usually
reveal a more complicated structure. The dependence of the
potential energy on the deformation parameters (required in the
ECC model to calculate the nucleus-nucleus potential energy,
and, finally, to determine the parameters of the empirical
distribution of dynamic barrier heights function) is rather
uncertain, too. The parameters of this dependence are usually
taken on the basis of the liquid-drop model or/and systematic
comparison with the available experimental data for the
reactions similar to the one under analysis.

The mentioned difficulties related to the empirical distribu-
tion function of the dynamic barrier heights were overcome in
the model developed in Ref. [37]. The model is based on the
original ECC model with neutron rearrangement [3], where
the barrier distribution function is extracted from the QCC
calculations (CCDEF code [39]). Good agreement between the
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experimental data and the calculated fusion cross sections is
achieved for the 32S + 96Zr system by including up to four
neutron rearrangement channels.

In this paper, we present a new method of accounting
for neutron transfer channels in the processes of sub-barrier
fusion. It consists of combining the QCC approach, which
consistently treats coupling to rotational and/or vibrational
collective excitations, and semiclassical approximation for
the neutron transfer probability. The proposed method is
rather prompt compared to the fully microscopical ones. It
naturally includes the neutron transfer channels into the QCC
computational scheme, while the problems connected with
the use of the empirical distribution function of dynamic
barrier heights (the crucial ingredient of the ECC approach)
are avoided. We describe the method in detail in Sec. II.
A few examples of the calculated cross sections and the
barrier distribution functions compared with the available
experimental data are given in Sec. III.

II. MODEL

The fusion cross sections can be decomposed over partial
waves and written as

σfus(E) = π�
2

2μE

∞∑
l=0

(2l + 1)Tl(E), (1)

where E is the center-of-mass energy, μ is the reduced mass of
the system, l is the orbital angular momentum, and Tl(E) is the
barrier penetration probability. In order to find the coefficients
Tl(E) using the QCC approach, one should consider the
following Hamiltonian:

Ĥ = − �
2

2μ
∇2 + V (r,α) + Ĥint(α). (2)

Here Ĥint is the Hamiltonian of the internal (collective and
single-particle) degrees of freedom α and V is the interaction
potential energy of the colliding nuclei. Then the stationary
Schrödinger equation for the wave function ��k completed with
the corresponding boundary conditions (see below) should be
solved. In the no-Coriolis approximation, often referred to as
the isocentrifugal approximation [25], the total wave function
can be decomposed over the partial waves as

��k(r,θ ; α) = 1

kr

∞∑
l=0

ileiσl (2l + 1)χl(r,α)Pl(cos θ ), (3)

where the definition of the Coulomb phase shifts σl is given
below Eq. (10).

The set of the coupled equations for χl(r,α) looks to be

∂2

∂r2
χl(r,α) − l(l + 1)

r2
χl(r,α)

+ 2μ

�2
[E − V (r,α) − Hint(α)]χl(r,α) = 0. (4)

The functions χl(r,α) can be decomposed over a complete
set of wave functions of the intrinsic motion ϕν(α), which obey

Hintϕν(α) = ενϕν(α):

χl(r,α) =
∑

ν

ψl,ν(r)ϕν(α), (5)

and the radial wave functions ψl,ν satisfy the CC differential
equations [25,27]

∂2

∂r2
ψl,ν(r)− l(l + 1)

r2
ψl,ν(r) + 2μ

�2
[E − εν −Vνν(r)]ψl,ν(r)

− 2μ

�2

∑
γ �=ν

Vγ ν(r)ψl,γ (r) = 0. (6)

In Eqs. (6) the coupling matrix elements Vγν are given as

Vγν(r) =
∫

ϕ∗
ν (α)V (r,α)ϕν(α)dα. (7)

At this point the internal degrees of freedom α and the
corresponding total potential energy of the system should be
defined. It is well known that the standard QCC model takes
into account only collective degrees of freedom (deformations
βiλ of multipolarity λ = 2,3, . . . and/or angles of mutual
orientations θi of colliding nuclei, i = 1,2). The potential
energy of two deformable and/or rotating nuclei V (r,α) is
a sum of the Coulomb and nuclear energies

V (r,α) = VC(r,α) + VN (r,α). (8)

The internal Hamiltonian Hint(α) has a form

Hint(α) =
∑
i=1,2

�
2Î 2

i

2Ji

+
∑
i=1,2

∑
λ�2

(
− 1

2diλ

∂2

∂2
iλ

+ 1

2
Ciλβ

2
iλ

)
,

(9)

where Ji are the moments of inertia of the colliding nuclei,
Ciλ are the rigidities to the deformation of multipolarity λ, and
diλ are the inertia parameters of surface vibrations.

The CC equations (6) are completed with the boundary con-
ditions as follows. Not so heavy nuclei, colliding at near-barrier
energies, are assumed to fuse (i.e., form a compound nucleus)
with the probability close to unity, once they overcome the
Coulomb barrier and come into contact. In that case the fusion
cross section can be measured by detecting all the fission
fragments and evaporation residues. Thus when formulating
the boundary conditions for the wave function ��k(r,θ ; α), the
flux that overcomes the Coulomb barrier is usually assumed
to be absorbed completely (and form a compound nucleus)
and not to be reflected from the inner region. This means that
at r < Rfus ≈ R1 + R2 the functions χl(r,α) are the incoming
waves, and there are no outgoing components reflected from
the region 0 � r � Rfus [27]. At larger distances, (r → ∞) the
wave function behaves as a scattering wave: the incoming and
outgoing waves in the elastic channel, ν = 0, and the outgoing
waves in the rest of the channels. For the partial wave functions,
this corresponds to the condition

ψl,ν(r → ∞)

= i

2

[
h

(−)
l (ην,kνr)δν0 −

(
k0

kν

)1/2

Sl
ν0h

(+)
l (ην,kνr)

]
, (10)
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where k2
ν = 2μ

�2 Eν , Eν = E − εν , εν is the nucleus excitation

energy in the channel ν, and ην = kνZ1Z2e
2

2Eν
is the Sommerfeld

parameter. The quantities h
(±)
l (ην,kνr) are the Coulomb partial

wave functions with the asymptotic behavior exp(±ixl,ν),
where xl,v = kνr − ην ln 2kνr + σl,ν − lπ/2, σl,ν = arg �(l +
1 + iην) are the Coulomb partial phase shifts, and Sl

ν0 are
the partial scattering matrix elements. A similar expression is
obtained for the closed channels (Eν < 0) with an imaginary
argument of the function h

(+)
l . Equations (6) with these

boundary conditions are solved numerically [27]. The partial
penetration probability, which takes account of the effect of
the vibrational and/or rotational couplings, is defined by the
ratio of the passed and incoming fluxes

T CC
l (E) = 1

j0(E)

∑
ν

jl,ν(E), (11)

where jl,ν = −i �

2μ
(ψl,ν

dψ∗
l,ν

dr
− ψ∗

l,ν
dψl,ν

dr
)|r�Rfus is the partial

flux in the channel ν and j0 = �k0/μ.
Let us now include neutron transfer channels into the

above-described standard QCC approach. As was already
mentioned, when the colliding nuclei approach each other, the
neutron(s) wave function(s) can be rearranged between both
nuclei already before passing through the Coulomb barrier.
If the energy of the ground-state-to-ground-state transition is
positive, then the neutron rearrangement may go with positive
as well as with negative Q values depending on the energy of
the intermediate state. In this case the kinetic energy of relative
motion changes to E + Q. At positive Q values this leads to a
gain in the kinetic energy and, thus, to an increase of tunneling
probability through the barrier at sub-barrier energies. Such a
mechanism can be phenomenologically added to the QCC ap-
proach. The incoming flux can penetrate the multidimensional
Coulomb barrier in different neutron rearrangement channels
with the probability αx(E,l,Q) for transfer of x neutrons. In
that case, the total penetration probability in Eq. (1) (which
takes into account the rearrangement of neutrons) can be
obtained by averaging over different neutron-transfer channels
and Q values for neutron transfer:

Tl(E) = N−1
tr

∫ max{Qxn}

−E

[δ(Q) + αtr (E,l,Q)]

×T CC
l (E + Q) dQ, (12)

where the first term in square brackets corresponds to the no-
transfer channel, Qxn is the Q value of the ground-to-ground
transfer of x neutrons, and the neutron transfer probability is
defined as

αtr (E,l,Q) =
xmax∑
x=1

αx(E,l,Q), (13)

where xmax is the maximal number of the included neutron
transfer channels (four in the present calculations).

The standard QCC model (without neutron rearrangement)
corresponds to the case of αtr = 0 in Eq. (12), i.e., when the Q-
value distribution is the δ function and Ntr = 1. Consideration
of coupling to neutron transfer channels leads to Q distribution,
which has the typical shape shown in Fig. 1. Each Qxn value

-20 -10 0 10
Q (MeV)

Q1n

Q2n

Q3n

Q4n

Ve
M( ytilibaborp refsnart nortuen
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FIG. 1. Typical behavior of neutron transfer probability function
αtr entering Eq. (12). The Qxn values are assumed to be equal to
2x (MeV).

gives a threshold for transfer of the corresponding number of
neutrons that results in a step behavior of the αtr function.

The normalization constant in Eq. (12) is defined as

Ntr = 1 +
∫ Qxn

−E

αtr (E,l,Q)dQ, (14)

and the probability of transfer of x neutrons with a given
Q value (less than Qxn) can be estimated semiclassi-
cally [3,40,41]:

αx(E,l,Q) = N−1
x exp

(−Q2
/

2σ 2
x

)
× exp(−2�x[D(E,l) − D0]). (15)

Note that Ntr is close to unity at sub-barrier energies,
when the influence of neutron rearrangement channels on
the fusion cross section can be visible and the semiclassical
approximation is applicable. This is due to rather small
values of the neutron transfer probabilities in this region
(see, e.g., the results of the TDHF calculations [7] and
experimental data for the 1n − 4n transfer probabilities for
the 40Ca + 96Zr system [42]). Although the values of neutron
transfer probabilities are small, the corresponding term in
Eq. (12) is very important for deep sub-barrier energies,
where the penetration probability through the fusion barrier
is extremely energy sensitive.

The normalization factor Nx in Eq. (15) is defined as

Nx =
∫ Qxn

−E

exp
(−Q2

/
2σ 2

x

)
dQ, (16)

and for sequential transfer of x neutrons, one has

�x =
x∑

i=1

�(εi), �(εi) =
√

2μnεi/�2, (17)

where εi is the binding energy of the ith transferred neutron and
μn is the neutron reduced mass. D(E,l) is the distance of the
closest approach along the Coulomb trajectory with the angular
momentum l, D0 = R

(n)
1 + R

(n)
2 + d0, R

(n)
i = r

(n)
0 A1/3 are the

orbit radii of valence (transferred) neutrons of the colliding
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nuclei (r (n)
0 and d0 are the adjustable parameters). The variance

of the Q distribution of the neutron-transfer probability (15)
is defined as [41]

σx =
√

2�2�xB

μRB

, (18)

where RB is the barrier radius and B is the barrier height for
spherical nuclei. The values of r

(n)
0 = 1.25 fm and d0 = 2.5 fm

were obtained in our previous paper [4]. Note that the values
r

(n)
0 = 1.4 fm and d0 = 0 were extracted [40,42,43] from

the analysis of the data on transfer reactions. This leads
to smaller values of αk for transfer reactions as compared
to those required for fusion reactions. This difference can
be understood this way: For the fusion reactions the effect
from the neutron rearrangement depends on how strongly
the wave function of the valence neutron is spread over the
two-center molecular states at the moment of the closest
approach. However, the transfer probability is given by the
situation after reseparation of the colliding nuclei at infinite
distances between them. Due to a certain adiabaticity of the
process, transfer (rearrangement) probability should be higher
at the turning point and, thus, greater in the analysis of fusion
reactions.

It should be mentioned that integration over negative Q
values has a rather small input to integral (12) due to a fast
decrease of the barrier penetration probability T CC

l at sub-
barrier energies. Therefore, for practical application of the
developed model, we substitute the lower limit by −max{Qxn}.

Note once more that the model described above is not a fully
microscopical one, since it combines a quantum description of
coupling of relation motion to collective degrees of freedom
(surface vibrations and/or rotations) and semiclassical approx-
imation for neutron transfer probabilities. It was mentioned
above that the TDHF theory can be effectively used for analysis
of processes of low-energy nucleus-nucleus collisions [7–9].
The cross sections of the few-nucleon transfer reactions calcu-
lated within the TDHF approach and within the Langevin-type
model [employing the semiclassical approximation of nucleon
transfer probability analogous to Eq. (15)] are in a good
agreement with each other as well as with the experimental
data (see Figs. 26 and 27 of Ref. [8]). A similar conclusion
about the applicability of the semiclassical approximation for
analysis of few-nucleon transfer reactions was made earlier in
Ref. [3]. Application of the TDHF approach and the models
based on the time-dependent Schrödinger equation [11,12] for
nucleon transfer processes is still rather limited, in particular,
since such the calculations are very time-consuming and
require substantial computational resources. Therefore, the
corresponding efficient semiclassical approximations are still
of great value for practical use. As opposed to the fully
microscopical models, they may miss some fine effects.
Nevertheless, they do correctly catch the main physical
regularities of the processes under analysis.

III. TEST OF THE MODEL AND CONCLUSIONS

In this section we are going to test the proposed model.
We will subsequently call it QCC+ENR (empirical neutron

TABLE I. The vibrational properties of nuclei used in our QCC
calculations. The parameter nph is the number of included phonons.
The data are taken from Refs. [28,45,46].

Nucleus (λπ )nph Eλ (MeV) βλ

40Ca (3−)1 3.737 0.411
32S (2+)1 2.230 0.315

(3−)1 5.006 0.4
90Zr (2+)2 2.186 0.089

(3−)2 2.748 0.211
94Zr (2+)2 0.919 0.09

(3−)2 2.058 0.193
96Zr (2+)2 1.751 0.08

(3−)2 1.897 0.284
60Ni (2+)2 1.333 0.207

(3−)1 4.04 0.209
64Ni (2+)2 1.346 0.179

(3−)1 3.56 0.201
100Mo (2+)2 0.536 0.231

(3−)2 1.908 0.218

rearrangement). Note that all the considered examples below
correspond to fusion of nuclei that are spherical in their ground
states. Thus coupling to vibrational states is taken into account;
i.e., the rotational term of the Hamiltonian (9) is lacking.
However, the method can be equally applied to the systems
of nuclei deformed in their ground states as well as to the de-
formed and spherical combinations. All the calculations were
performed assuming the nuclear part of the nucleus-nucleus
potential of the Woods-Saxon form with the parameters taken
from the Akyüz-Winther parametrization [44]. The vibrational
properties of fusing nuclei are shown in Table I. For each
combination, the quadrupole and octupole vibration modes of
both nuclei are considered, except for a rather weak quadrupole
mode of 40Ca (E2+ = 3.9 MeV, β2+ = 0.123) neglected here.
Its inclusion results in an insignificant increase of the sub-
barrier fusion cross section and can be easily compensated by
a small variation of the potential parameters. The Q values for
the ground-state-to-ground-state neutron transfer are given in
Table II. This table contains as well the values of the variances
of Q distributions for transfer of x neutrons (for positive Qxn

values). One can see that σx � Qxn for all the cases. This
results in broad Q distributions with substantial probability
of neutron transfer even to the ground state of the recipient
nucleus.

The first classical example of the fusion of 40Ca with three
zirconium isotopes is shown in Fig. 2. One may notice a good
agreement with the data on the fusion cross section for all
three shown combinations. The neutron transfer channels are
taken into consideration for the 40Ca + 94,96Zr systems, while
the data for the 40Ca + 90Zr reaction can be reproduced taking
account of coupling to vibrational states only (since all the Qxn

values are negative). A similar situation is observed (see Fig. 3)
for the recently studied fusion reactions of 32S with the same
three zirconium isotopes [37,49]. With regard to the previous
case, there are positive Qxn values for the 32S + 94,96Zr
combinations, while all Qxn are negative for 32S + 90Zr one.
In spite of the overall good agreement with the data, one
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TABLE II. Qxn values for the ground-to-ground neutron transfer and the variances σx . The quantities are given in MeV.

Reaction Q1n σ1 Q2n σ2 Q3n σ3 Q4n σ4

40Ca + 90Zr −3.606 −1.444 −5.865 −4.183
40Ca + 94Zr +0.143 4.20 +4.890 5.79 +4.188 7.19 +8.125 8.26
40Ca + 96Zr +0.508 4.13 +5.527 5.69 +5.241 7.06 +9.637 8.10
32S + 90Zr −3.327 −1.229 −6.596 −6.156
32S + 94Zr +0.422 4.18 +5.105 5.75 +3.456 7.15 +6.151 8.21
32S + 96Zr +0.787 4.10 +5.742 5.65 +4.509 7.02 +7.664 8.05
64Ni + 100Mo −2.194 +0.833 5.48 −2.002 −1.031
60Ni + 100Mo −0.472 +4.199 5.65 +2.394 7.04 +5.230 8.08

may notice an insignificant overestimation of the experimental
cross section for the 32S + 96Zr reaction at deep sub-barrier
region and some underestimation for the 32S + 94Zr case. Note

that a similar underestimation is obtained for the 40Ca + 94Zr
system. This difference can be easily removed, for example,
by small variation of the parameters of the nucleus-nucleus

FIG. 2. (Color online) Fusion cross sections and barrier distribution functions for 40Ca + 90,94,96Zr. The dotted curves show the no-coupling
limit. The solid and dashed curves correspond to the calculations with (QCC+ENR model) and without (QCC model) taking account of neutron
transfer, respectively. (Left) The experimental data on fusion cross sections are from Refs. [1] (open circles) and [47] (filled rectangles). (Right)
The filled symbols are the experimental estimation of the barrier distribution functions taken from Ref. [48]. The open symbols show estimations
of the same quantity made by the method proposed in Ref. [33] (see the text).
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FIG. 3. (Color online) Fusion cross sections and barrier distribution functions for 32S + 90,94,96Zr. The notations are the same as in Fig. 2.
The experimental data for the fusion cross sections are taken from Ref. [37] for 32S + 90,96Zr and from Ref. [49] for 32S + 94Zr.

potential or the neutron radius parameters r (0)
n . In this work,

however, we do not fit the model parameters to the data in
order to show the model’s predictive power.

Furthermore, Figs. 2 and 3 show the barrier distribution
functions D(E) = (πR2

B)
−1

d2(Eσfus)/dE2, where RB is the
barrier radius. The figures contain two sets of experimental
data. One of them (filled symbols) is taken from the original
experimental papers, and another one (open symbols) was
obtained in our analysis using the method proposed in Ref. [33]
and described in the Appendix A. We used this new method
based on the spline approximation technic because the standard
method described, for example, in Ref. [50], causes difficulties
in performing direct double differentiation of the experimental
fusion cross section. The digitized experimental data of the
fusion cross section (used here) are taken from the NRV
knowledge base [28]. They may contain some additional
uncertainties caused by the procedure of digitizing the original
experimental papers. These uncertainties, being insignificant

(and invisible) when one is discussing the fusion cross section,
may result, however, in large uncertainties for the second
derivative calculated by a standard finite difference method.
The method described in Ref. [33] eliminates all such the
uncertainties and results in a very similar barrier distributions
at sub-barrier and near-barrier energy regions as compared
with those taken from original experimental works.

As usual, the barrier distribution functions calculated in the
single-barrier penetration model (without regard for channel
coupling) are the functions with a single maximum at the
barrier position (dotted curves). Consideration of coupling to
the collective vibrational degrees of freedom (dashed curves)
results in broadening of the barrier distributions, their shift
towards lower energies, and a well-distinguished structure (few
maxima). This is already sufficient for the fusion reactions
with 90Zr (for which neutron transfer channels do not play
a role) to satisfactory agree with the experimental data in
a whole energy range. For the reactions with the 94,96Zr
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targets, neutron rearrangement significantly influences the
sub-barrier fusion, and the barrier distributions calculated
without taking account of this effect are still too narrow. The
solid curves are obtained within the QCC + ENR model, i.e.,
with neutron rearrangement. This leads to further broadening
of the calculated barrier distribution functions, without their
structures (number of maxima and their positions) being
visibly changed. One can see overall good agreement of the
calculated barrier distributions with the experimental data.
This is especially relevant to the low-energy tails, which cannot
be reproduced in the QCC calculations.

As mentioned above, it was concluded in our previous
work [4] that the sub-barrier fusion enhancements owing
to neutron rearrangement and excitation of the collective
vibrational and/or rotational states are not additive. This means
that neutron rearrangement channels play a significant role
when the system reveals a moderate effect from coupling to
the collective states. That is the case of fusion of spherical rigid
(usually magic or nearly magic) nuclei, such as calcium and
zirconium. If, however, one or both fusing nuclei are rather
soft with respect to their deformation, then the sub-barrier
fusion enhancement due to neutron rearrangement becomes
less visible even in the presence of large Qxn values. A good
example of such kind is a pair of the 60,64Ni + 100Mo fusion
reactions studied experimentally in Refs. [51,52]. Figure 4
demonstrates a good agreement between the QCC+ENR

FIG. 4. (Color online) Fusion cross sections for 64,60Ni + 100Mo.
The dotted curves demonstrate the no-coupling limits. The calcu-
lations with (solid curve) and without (dashed curves) considering
neutron rearrangement are shown. The experimental data are taken
from Ref. [51] ( 64Ni + 100Mo) and Ref. [52] ( 60Ni + 100Mo).

calculations and these data as well. The Qxn values for
64Ni + 100Mo are negative while they are positive for the
60Ni + 100Mo system and close to the 40Ca + 96Zr combi-
nation (see Table I). However, the sub-barrier fusion cross
section for the 60Ni + 100Mo reaction differs negligibly from
the 64Ni + 100Mo case. This is attributed to softness of the
100Mo nucleus in comparison with a much stiffer 96Zr. As
the result, the penetration probabilities T CC

l for the Ni+Mo
system decrease at sub-barrier energies much weaker than for
the Ca+Zr case. Therefore, averaging over Q values in Eq. (12)
has a more pronounced effect for the Ca+Zr combination. The
differences between the Q values of the two reactions (and the
corresponding differences between the αtr functions) have a
much weaker effect. A more detailed discussion of the subject
can be found, e.g., in Ref. [4].

To summarize, in this paper we proposed a new method
of accounting for neutron transfer channels in the QCC
approach. The method is based on semiclassical relations for
the neutron transfer probabilities and the quantum consid-
eration of coupling of the relative motion to the collective
(vibrational and/or rotational) degrees of freedom. This new
model (called QCC+ENR) was successfully tested on a few
combinations of fusing nuclei. A good overall agreement with
the data on the fusion cross sections as well as the barrier
distribution functions was obtained without any variation of
the model parameters. The QCC+ENR model confirms all the
conclusions made within the empirical coupled-channel model
with neutron rearrangement (see Refs. [3,4]). Furthermore, one
of its advantages is a more reliable microscopic consideration
of the coupling of relative motion to collective degrees of
freedom since the parameters of this coupling [entering the
Hamiltonian (9)] can be extracted directly from the properties
of fusing nuclei. In addition, the QCC + ENR model—
contrary to the ECC model—is able to reproduce the structure
of the barrier distribution functions.
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APPENDIX: NUMERICAL ESTIMATION OF
EXPERIMENTAL BARRIER DISTRIBUTION FUNCTION

The barrier distribution function D(E) = (πR2
B)

−1
D̃(E),

where D̃(E) = d2(Eσfus)/dE2, is not an experimentally mea-
surable quantity but a result of numerical differentiation of
experimental fusion cross sections. Its determination suffers a
lot from the limited number of energy values as well as the
experimental uncertainties of the cross section measurements.
Therefore, the experimental function D(E) should be better
called an estimation of the barrier distribution function
since it cannot be determined unambiguously. To obtain
D(E), we use a mathematically correct procedure of two-
stage spline smoothing [33]. In the initial stage the smoothing
spline function f (E) = ln [F (E)], F (E) = Eσfus(E) is found
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from the condition of the minimum of the functional [53]

�1[f (E)]=
∫ En

E0

[f ′′(E)]2dE +
n∑

k=0

p−1
k [f (Ek) −fk]2, (A1)

with the experimental values fk = ln (Ekσfus,k). The values
pk give a balance between deviation from the values fk and
smoothness of the approximation and should somehow be de-
termined. It is reasonable to assume that for the points defined
with a smaller experimental uncertainty, the approximating
curve should pass closer to the points (smaller pk values),
while for the points with larger relative uncertainty, the curve
should be smoother (larger pk). Thus, we approximate pk by
the relative experimental uncertainty of the measured cross
section, i.e.,

pk = �σfus

σfus
. (A2)

The barrier distribution function values

D̃k = F ′′(Ek) = g′(Ek) exp[g(Ek)] (A3)

and estimations of their errors

δD̃k = |g′(Ek) exp[g(Ek)] − g′
0(Ek) exp[g0(Ek)]| (A4)

are calculated at the second stage by the smoothing function

g(E) = ln F ′(E) = f (E) + 1
2 ln[f ′(E)]2, (A5)

which is found from the condition of the minimum of the
functional analogous to Eq. (A1):

�2[g(E)] =
∫ En

E0

[g′′(E)]2dE +
m∑

k=0

q−1
k [g(Ek) − gk]2. (A6)

The rough blunders are eliminated from the gk values, k =
1, . . . ,m. The value of gk is considered as a rough blunder if it
does not belong to the confidence interval for five neighboring
gi values, where i = k − 2, . . . ,k + 2. The qk values are taken
as qk = pk + 0.1.

The function g0(E) in Eq. (A4) is the result of calculation
without smoothing, i.e., at the limit pk → 0.

In order to find the theoretical barrier distribution function,
we use the same procedure but assume pk = qk = 0.01.
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F. D. Becchetti, A. Villano, M. Ojaruega, M. Febbraro, Y. Chen,
H. Jiang, P. A. DeYoung, G. F. Peaslee, C. Guess, U. Khadka, J.
Brown, J. D. Hinnefeld, L. Acosta, E. S. Rossi, Jr, J. F. P. Huiza,
and T. L. Belyaeva, Phys. Rev. Lett. 107, 092701 (2011).

[24] C. H. Dasso and S. Landowne, Comput. Phys. Commun. 46,
187 (1987).

[25] K. Hagino, N. Rowley, and A. T. Kruppa, Comput. Phys.
Commun. 123, 143 (1999).

064603-9

http://dx.doi.org/10.1016/S0375-9474(98)00121-3
http://dx.doi.org/10.1016/S0375-9474(98)00121-3
http://dx.doi.org/10.1016/S0375-9474(98)00121-3
http://dx.doi.org/10.1016/S0375-9474(98)00121-3
http://dx.doi.org/10.1103/PhysRevC.46.2360
http://dx.doi.org/10.1103/PhysRevC.46.2360
http://dx.doi.org/10.1103/PhysRevC.46.2360
http://dx.doi.org/10.1103/PhysRevC.46.2360
http://dx.doi.org/10.1103/PhysRevC.67.061601
http://dx.doi.org/10.1103/PhysRevC.67.061601
http://dx.doi.org/10.1103/PhysRevC.67.061601
http://dx.doi.org/10.1103/PhysRevC.67.061601
http://dx.doi.org/10.1103/PhysRevC.90.014614
http://dx.doi.org/10.1103/PhysRevC.90.014614
http://dx.doi.org/10.1103/PhysRevC.90.014614
http://dx.doi.org/10.1103/PhysRevC.90.014614
http://dx.doi.org/10.1016/0375-9474(94)90430-8
http://dx.doi.org/10.1016/0375-9474(94)90430-8
http://dx.doi.org/10.1016/0375-9474(94)90430-8
http://dx.doi.org/10.1016/0375-9474(94)90430-8
http://dx.doi.org/10.1016/0375-9474(95)00374-A
http://dx.doi.org/10.1016/0375-9474(95)00374-A
http://dx.doi.org/10.1016/0375-9474(95)00374-A
http://dx.doi.org/10.1016/0003-4916(89)90145-0
http://dx.doi.org/10.1016/0003-4916(89)90145-0
http://dx.doi.org/10.1016/0003-4916(89)90145-0
http://dx.doi.org/10.1016/0003-4916(89)90145-0
http://dx.doi.org/10.1140/epja/i2008-10614-6
http://dx.doi.org/10.1140/epja/i2008-10614-6
http://dx.doi.org/10.1140/epja/i2008-10614-6
http://dx.doi.org/10.1140/epja/i2008-10614-6
http://dx.doi.org/10.1103/PhysRevC.88.014614
http://dx.doi.org/10.1103/PhysRevC.88.014614
http://dx.doi.org/10.1103/PhysRevC.88.014614
http://dx.doi.org/10.1103/PhysRevC.88.014614
http://dx.doi.org/10.1140/epja/i2012-12152-0
http://dx.doi.org/10.1140/epja/i2012-12152-0
http://dx.doi.org/10.1140/epja/i2012-12152-0
http://dx.doi.org/10.1140/epja/i2012-12152-0
http://dx.doi.org/10.1143/PTP.97.437
http://dx.doi.org/10.1143/PTP.97.437
http://dx.doi.org/10.1143/PTP.97.437
http://dx.doi.org/10.1143/PTP.97.437
http://dx.doi.org/10.1103/PhysRevC.75.035809
http://dx.doi.org/10.1103/PhysRevC.75.035809
http://dx.doi.org/10.1103/PhysRevC.75.035809
http://dx.doi.org/10.1103/PhysRevC.75.035809
http://dx.doi.org/10.1134/S1063778814120151
http://dx.doi.org/10.1134/S1063778814120151
http://dx.doi.org/10.1134/S1063778814120151
http://dx.doi.org/10.1134/S1063778814120151
http://dx.doi.org/10.1134/S1063778815060149
http://dx.doi.org/10.1134/S1063778815060149
http://dx.doi.org/10.1134/S1063778815060149
http://dx.doi.org/10.1103/PhysRevC.87.034608
http://dx.doi.org/10.1103/PhysRevC.87.034608
http://dx.doi.org/10.1103/PhysRevC.87.034608
http://dx.doi.org/10.1103/PhysRevC.87.034608
http://dx.doi.org/10.1103/PhysRevC.89.054608
http://dx.doi.org/10.1103/PhysRevC.89.054608
http://dx.doi.org/10.1103/PhysRevC.89.054608
http://dx.doi.org/10.1103/PhysRevC.89.054608
http://dx.doi.org/10.1007/BF01289520
http://dx.doi.org/10.1007/BF01289520
http://dx.doi.org/10.1007/BF01289520
http://dx.doi.org/10.1007/BF01289520
http://dx.doi.org/10.1103/PhysRevLett.81.4580
http://dx.doi.org/10.1103/PhysRevLett.81.4580
http://dx.doi.org/10.1103/PhysRevLett.81.4580
http://dx.doi.org/10.1103/PhysRevLett.81.4580
http://dx.doi.org/10.1103/PhysRevLett.84.2342
http://dx.doi.org/10.1103/PhysRevLett.84.2342
http://dx.doi.org/10.1103/PhysRevLett.84.2342
http://dx.doi.org/10.1103/PhysRevLett.84.2342
http://dx.doi.org/10.1103/PhysRevC.70.044601
http://dx.doi.org/10.1103/PhysRevC.70.044601
http://dx.doi.org/10.1103/PhysRevC.70.044601
http://dx.doi.org/10.1103/PhysRevC.70.044601
http://dx.doi.org/10.1103/PhysRevLett.96.162701
http://dx.doi.org/10.1103/PhysRevLett.96.162701
http://dx.doi.org/10.1103/PhysRevLett.96.162701
http://dx.doi.org/10.1103/PhysRevLett.96.162701
http://dx.doi.org/10.1016/j.physletb.2008.11.021
http://dx.doi.org/10.1016/j.physletb.2008.11.021
http://dx.doi.org/10.1016/j.physletb.2008.11.021
http://dx.doi.org/10.1016/j.physletb.2008.11.021
http://dx.doi.org/10.1016/j.ppnp.2007.02.002
http://dx.doi.org/10.1016/j.ppnp.2007.02.002
http://dx.doi.org/10.1016/j.ppnp.2007.02.002
http://dx.doi.org/10.1016/j.ppnp.2007.02.002
http://dx.doi.org/10.1103/PhysRevC.80.054609
http://dx.doi.org/10.1103/PhysRevC.80.054609
http://dx.doi.org/10.1103/PhysRevC.80.054609
http://dx.doi.org/10.1103/PhysRevC.80.054609
http://dx.doi.org/10.1088/1742-6596/282/1/012014
http://dx.doi.org/10.1088/1742-6596/282/1/012014
http://dx.doi.org/10.1088/1742-6596/282/1/012014
http://dx.doi.org/10.1088/1742-6596/282/1/012014
http://dx.doi.org/10.1103/PhysRevC.84.064604
http://dx.doi.org/10.1103/PhysRevC.84.064604
http://dx.doi.org/10.1103/PhysRevC.84.064604
http://dx.doi.org/10.1103/PhysRevC.84.064604
http://dx.doi.org/10.1103/PhysRevLett.107.092701
http://dx.doi.org/10.1103/PhysRevLett.107.092701
http://dx.doi.org/10.1103/PhysRevLett.107.092701
http://dx.doi.org/10.1103/PhysRevLett.107.092701
http://dx.doi.org/10.1016/0010-4655(87)90045-2
http://dx.doi.org/10.1016/0010-4655(87)90045-2
http://dx.doi.org/10.1016/0010-4655(87)90045-2
http://dx.doi.org/10.1016/0010-4655(87)90045-2
http://dx.doi.org/10.1016/S0010-4655(99)00243-X
http://dx.doi.org/10.1016/S0010-4655(99)00243-X
http://dx.doi.org/10.1016/S0010-4655(99)00243-X
http://dx.doi.org/10.1016/S0010-4655(99)00243-X


A. V. KARPOV, V. A. RACHKOV, AND V. V. SAMARIN PHYSICAL REVIEW C 92, 064603 (2015)

[26] M. Trotta, A. M. Stefanini, L. Corradi, A. Gadea, F. Scarlassara,
S. Beghini, and G. Montagnoli, Phys. Rev. C 65, 011601 (2001).

[27] V. I. Zagrebaev and V. V. Samarin, Phys. At. Nucl. 67, 1462
(2004); V. V. Samarin and V. I. Zagrebaev, Nucl. Phys. A 734,
E9 (2004).

[28] Fusion code and data of the NRV: http://nrv.jinr.ru/.
[29] A. M. Stefanini, F. Scarlassara, S. Beghini, G. Montagnoli, R.

Silvestri, M. Trotta, B. R. Behera, L. Corradi, E. Fioretto, A.
Gadea, Y. W. Wu, S. Szilner, H. Q. Zhang, Z. H. Liu, M. Ruan,
F. Yang, and N. Rowley, Phys. Rev. C 73, 034606 (2006).

[30] V. I. Zagrebaev, Phys. Rev. C 64, 034606 (2001).
[31] V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid,

and H. Q. Zhang, Phys. Rev. C 84, 064614 (2011).
[32] V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid,

and H. Q. Zhang, Phys. Rev. C 86, 014602 (2012).
[33] V. V. Samarin, EPJ Web Conf. 86, 00039 (2015).
[34] V. P. Zhigunov and B. N. Zachar’ev, The Couple Channel Ap-

proach in Quantum Theory of Scattering (Atomizdat, Moscow,
1974).

[35] N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions
(Clarendon Press, Oxford, 1965).

[36] A. Adel, V. A. Rachkov, A. V. Karpov, A. S. Denikin, M.
Ismail, W. M. Seif, and A. Y. Ellithi, Nucl. Phys. A 876, 119
(2012).

[37] H. Q. Zhang, C. J. Lin, F. Yang, H. M. Jia, X. X. Xu, Z. D.
Wu, F. Jia, S. T. Zhang, Z. H. Liu, A. Richard, and C. Beck,
Phys. Rev. C 82, 054609 (2010).

[38] A. V. Karpov, V. A. Rachkov, A. S. Denikin, and V. I. Zagrebaev,
in Proceedings of the International Symposium on Exotic Nuclei
(EXON-2014), edited by Yu. E. Penionzhkevich and Yu. G.
Sobolev (World Scientific, Singapore, 2015), p. 103.

[39] J. Fermández-Niello, C. H. Dasso, and S. Landowne,
Comput. Phys. Commun. 54, 409 (1989).

[40] W. von Oertzen, H. G. Bohlen, B. Gebauer, R. Künkel, F.
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