ELASTIC DEUTERON SCATTERING AND OPTICAL MODEL PARAMETERS AT ENERGIES UP TO 100 MeV

J. Bojowald, H. Machner, H. Nann, W. Oelert, M. Rogge, P.Turek
Physical Review C38 (1988) pp.1153-1163.

The phenomenological optical potential, U , is defined as

$$
\begin{equation*}
U(r, E)=-V_{V}(r, E)-i W_{V}(r, E)+i W_{D}(r, E)+V_{S O}(r, E)(\vec{l} \cdot \vec{s})+V_{C}(r) \tag{0.1}
\end{equation*}
$$

where $V_{V, S O}$ and $W_{V, D}$ are the real and imaginary components of the volume-central (V), surface-central (D) and spin-orbit (SO) potentials, respectively. E is the laboratory energy of the incident particle in MeV . All components are separated in E-dependent well depths, V_{V}, W_{V}, W_{D}, and $V_{S O}$, and energy-independent radial parts f, namely

$$
\begin{gather*}
V_{V}(r, E)=V_{V}(E) f\left(r, R_{V}, a_{V}\right), \\
W_{V}(r, E)=W_{V}(E) f\left(r, R_{W}, a_{W}\right), \\
W_{D}(r, E)=-4 a_{W} W_{D}(E) \frac{d}{d r} f\left(r, R_{W}, a_{W}\right), \tag{0.2}\\
V_{S O}(r, E)=V_{S O}(E)\left(\frac{\hbar}{m_{\pi} c}\right)^{2} \frac{1}{r} \frac{d}{d r} f\left(r, R_{S O}, a_{S O}\right) .
\end{gather*}
$$

As usual, the form factor $f\left(r, R_{i}, a_{i}\right)$ is a Woods-Saxon shape

$$
\begin{equation*}
f(r, R, a)=\left(1+\exp \left[\left(r-R_{i}\right) / a_{i}\right]\right)^{-1} \tag{0.3}
\end{equation*}
$$

where, with A being the atomic mass number, the geometry parameters are the radius $R_{i}=r_{i} A^{1 / 3}$ and the diffuseness parameters a_{i}. For charged projectiles, the Coulomb term V_{C}, as usual, is given by that of a uniformly charged sphere

$$
V_{C}(r)=\left\{\begin{array}{c}
\frac{Z z e^{2}}{2 R_{C}}\left(3-\frac{r^{2}}{R_{C}^{2}}\right), \text { for } r \leq R_{C}, \tag{0.4}\\
\frac{Z z e^{2}}{r}, \text { for } r>R_{C},
\end{array}\right.
$$

with $Z(z)$ the charge of the target (projectile), and $R_{C}=r_{C} A^{1 / 3}$ the Coulomb radius.

${ }^{2}$ H OMP parameterization

The global deuteron OMP for $50 \leq E \leq 100 \mathrm{MeV}$ and $20 \leq A \leq 208$ is given by the following formulas.

Real central potential:

$$
\begin{aligned}
& V_{V}=81.32-0.24 E+1.34 \frac{Z}{A^{1 / 3}} \mathrm{MeV} \\
& R_{V}=1.18 A^{1 / 3} \mathrm{fm} \\
& a_{V}=0.636+0.035 A^{1 / 3} \mathrm{fm}
\end{aligned}
$$

Imaginary central potential:

$$
\begin{aligned}
& W_{V}=\left\{\begin{array}{l}
0, \text { for } E<45 \mathrm{MeV} \\
0.132(E-45) \mathrm{MeV}, \text { for } E>45 \mathrm{MeV}
\end{array}\right. \\
& W_{D}=7.35+1.15 A^{1 / 3}-0.712 W_{V} \mathrm{MeV}, \\
& R_{W}=1.27 A^{1 / 3} \mathrm{fm}, \\
& a_{W}=0.768+0.021 A^{1 / 3} \mathrm{fm},
\end{aligned}
$$

Coulomb potential radius:

$$
R_{C}=1.3 A^{1 / 3} \mathrm{fm}
$$

Spin-orbit potential (it is not used at the moment in the NRV OMP-code):

$$
\begin{aligned}
& V_{S O}=6 \mathrm{MeV} \\
& R_{S O}=1.0 A^{1 / 3} \mathrm{fm}, \\
& a_{S O}=1.0 \mathrm{fm}
\end{aligned}
$$

