УДК 539.17.01

МАЛОНУКЛОННЫЕ ПЕРЕДАЧИ И СЛАБОДИССИПАТИВНЫЕ ПРОЦЕССЫ В GRAZING-МОДЕЛИ НИЗКОЭНЕРГЕТИЧЕСКИХ ЯДЕРНЫХ РЕАКЦИЙ

© 2013 г. В. В. Самарин

Объединенный институт ядерных исследований, Дубна E-mail: samarin@iinr.ru

Для представительного набора низкоэнергетических ядерных реакций рассмотрено применение квазиклассической модели A.Buнтера (A. Winther), реализованной в программе GRAZING. Показано, что модель хорошо описывает процессы малонуклонных передач с малой диссипацией энергии для сферических ядер 40 Ca, 96 Zr, 208 Pb и ряда других. Удовлетворительное согласие с экспериментальными данными имеет место для передач не более одного протона и примерно 6–8 нейтронов. Указаны реакции, по которым согласие с экспериментальными данными не достигается при стандартном наборе параметров.

DOI: 10.7868/S0367676513070193

введение

Касательные неупругие столкновения атомных ядер сопровождаются передачей нуклонов и деформацией поверхностей ядер — возбуждением коллективных степеней свободы. При этом относительное движение тяжелых ядер можно рассматривать на основе классической механики с использованием понятий классических траекторий и углов рассеяния, зависящих от прицельных параметров столкновения. Для внутренних степеней свободы - одночастичных состояний, низколежащих колебаний поверхностей ядер (квадрупольных, октупольных и т.д.) и высоколежащих колебаний (гигантских резонансов) – должно применяться квантовое описание. Характерным параметром при этом может служить минимальное расстояние s_{min} между поверхностями ядер (даже в приближении их неизменной сферической формы). Малым значениям s_{min}, касанию и пересечению ядерных поверхностей отвечают глубоко неупругие реакции и значительные передачи нуклонов. При достаточно больших s_{min} вероятности передач нуклонов и коллективных возбуждений малы, что позволяет использовать приближенные подходы (теорию возмущений, линейные части разложений в ряды, эмпирические модели и т.п.). Условиям больших и промежуточных значений расстояния s_{min} отвечает разработанная А.Винтером (A. Winther) [1, 2] квазиклассическая модель процессов малонуклонных передач с малой диссипацией энергии, реализованная в программе GRAZING [3]. В основе универсальных расчетных формул этой модели лежат следующие физические предположения: одночастичные передачи и неупругое рассеяние с рождением элементарных возбуждений независимы; коллективными элементарными возбуждениями ядер являются фононы, возмущения для них линейны по параметрам деформации; вероятности независимых одночастичных переходов малы по сравнению с единицей (что типично для одночастичных переходов); ядра в основных состояниях (до столкновения) считаются сферическими. Модель использует табличные данные по энергиям связи ядер (дефектам массы), энергиям квадрупольных и октупольных возбуждений и вероятностям электромагнитных переходов из состояний с возбуждением одного вибрационного кванта (*B*(*E*2), *B*(*E*3)). Остальные параметры: характеристики гигантских резонансов, плотности нейтронных и протонных состояний, формфакторы нуклонных передач и т.д. – находятся по универсальным эмпирическим или модельным формулам. Для каждой классической траектории (слабо зависящей от диссипации и флуктуаций энергии) модель включает в себя приближенное вычисление вблизи точки минимального сближения ядер r_0 вероятностей нуклонных передач, возбуждения низколежащих и высоколежащих колебаний и процедуру усреднения вероятностей этих процессов по прицельным параметрам b столкновения ядер (или моментам относительного движения *l*). Практическая независимость нейтронных и протонных передач друг от друга и от неупругих процессов в данной модели дает удобную возможность сравнения результатов расчета массовых и

зарядовых распределений с соответствующими экспериментальными данными. Подобный анализ неупругих процессов более сложен из-за наложения диссипации энергии, обусловленной различными коллективными возбуждениями и передачами нуклонов. Расчеты угловых распределений чувствительны к диссипации и флуктуациям энергии, а также к возможным отклонениям формы ядер от сферической. Программа GRAZING достаточно широко применяется для анализа экспериментальных данных (см., например, [4]). Удобную возможность выполнения расчетов массовых и зарядовых распределений с представлением результатов в наглядной графической форме дает запуск программы GRAZING на Интернет-сервере NRV [5].

В данной работе показано, что расчеты с помощью программы GRAZING хорошо описывают процессы малонуклонных передач с малой диссипацией энергии для сферических ядер ⁴⁰Ca, ⁹⁰Zr, ²⁰⁸Pb и ряда других. Удовлетворительное согласие с экспериментальными данными имеет место для передач примерно 6–8 нейтронов (не более) и одного протона. Выявлены также реакции, по которым согласие с экспериментальными данными отсутствует при стандартном наборе параметров.

1. ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Допущение о независимой передаче нуклонов для столкновения с определенным прицельным параметром (определенным моментом относительного движения ядер) приводит к распределению Бесселя по числам передач нейтронов ΔN и протонов ΔZ

где

$$P(\Delta N, \Delta Z) = P(\Delta N)P(\Delta Z), \qquad (1)$$

$$P(\Delta N) = \left(\frac{q^{\nu P}}{q^{\nu S}}\right)^{\frac{\Delta N}{2}} \times$$

$$\times I_{|\Delta N|} \left(2\sqrt{q^{\nu P}q^{\nu S}}\right) \exp\left(-q^{\nu P} - q^{\nu S}\right),$$
(2)

$$P(\Delta Z) = \left(\frac{q^{\pi P}}{q^{\pi S}}\right)^{\frac{\Delta Z}{2}} I_{|\Delta Z|} \left(2\sqrt{q^{\pi P}q^{\pi S}}\right) \exp\left(-q^{\pi P} - q^{\pi S}\right), (3)$$

 $q^{vP}, q^{\pi P}$ — средние числа подхваченных (pick-up) нейтронов (v) и протонов (π), $q^{vS}, q^{\pi S}$ — средние числа сорванных (stripping) нейтронов и протонов. При стандартном наборе параметров программы GRAZING средние числа подхваченных и/или сорванных нуклонов оказываются порядка единицы. График распределения для такого случая представлен на рис. 1. Шестикратному превышению средних чисел передач нуклонов соответствует уменьшение вероятности на 3 порядка.

Рис. 1. Графики вероятностного распределения (2) для средних чисел подхваченных и сорванных нейтронов $q^{vP} = 1$, $q^{vS} = 1$ (точки) и $q^{vP} = 2$, $q^{vS} = 2$ (кружки).

Результирующее распределение получается усреднением этих вероятностей по прицельным параметрам (моментам) столкновения с учетом неупругих процессов сталкивающихся ядер. Значения параметров $q^{\nu P}, q^{\pi P}, q^{\nu S}, q^{\pi S}$ в квазиклассической модели Винтера зависят от свойств одночастичных состояний в сталкивающихся ядрах, главным образом, от энергии (*Q*-value), выделяемой (*Q* > 0) или поглощаемой (*Q* < 0) при подхвате и срыве нуклона, и плотностей уровней нуклонов *g* вблизи уровня Ферми

$$g^{\nu} = \frac{3N}{2\epsilon^{\nu}} \frac{15}{\delta^{\nu}}, \quad g^{\pi} = \frac{3Z}{2\epsilon^{\pi}} \frac{15}{\delta^{\pi}},$$
 (4)

где δ^{ν} , δ^{π} — варьируемые параметры со стандартным значением $\delta^{\nu} = \delta^{\pi} = 8$ и

$$\varepsilon^{\nu} = 52 - 22 \frac{N - Z}{A} - 8,$$

$$\varepsilon^{\pi} = 52 + 22 \frac{N - Z}{A} - \frac{Ze^2}{1.2A^{1/3}} - 8.$$
(5)

Параметры δ^{ν} , δ^{π} могут быть связаны с так называемым параметром плотности уровней фермигаза [6]

$$a = \frac{\pi^2 g(\varepsilon_F)}{6} = \frac{\pi^2}{6} \left(g^{\nu} + g^{\pi} \right).$$
(6)

Значения ферми-газового параметра плотности уровней *a*, полученные из анализа экспериментальных данных по среднему расстоянию между нейтронными резонансами, и кривые зависимости параметра *a*, найденные по формуле (6) для четырех значений параметра $\delta^{v} = \delta^{\pi} = 5, 8, 10, 20,$ показаны на рис. 2*a*. Зависимость для реакции ⁴⁰Ca + ⁹⁶Zr средних чисел подхваченных и сорван-

Рис. 2. *а* – значения ферми-газового параметра плотности уровней *a*, полученные в [6] из анализа экспериментальных данных по среднему расстоянию между нейтронными резонансами, \bigcirc – четно-четные ядра; \bigtriangledown – четно-нечетные ядра; \triangle – нечетно-четные ядра; \bullet – нечетно-нечетные ядра, и кривые зависимости параметра *a*, найденные по формуле (6) для четырех значений параметра $\delta = \delta^{v} = \delta^{\pi} = 5$ – штриховая, δ – сплошная, 10 – штрих-пунктирная, 20 – точечная кривые соответственно; *б* – зависимость для реакции ⁴⁰Са + ⁹⁶Zr средних чисел подхваченных нейтронов и сорванных протонов (сплошная и штриховая кривые соответственно) от параметров δ^{v} , δ^{π} ; вертикальная штриховая линия указывает стандартное для программы GRAZING значение $\delta^{v} = \delta^{\pi} = 8$.

ных нейтронов (v) и протонов (π) и сечений от параметров δ^{v} , δ^{π} , определяющих плотности нуклонных уровней вблизи уровня Ферми в сталкивающихся ядрах, показана на рис. 26. Полные сечения образования ядер с различными массовыми числами из начального ядра-снаряда ⁴⁰Са при столкновении с ядром ⁹⁶Zr $E_{lab} = 152$ МэВ показаны на рис. 3*a*.

Интервалы потерь энергии налетающим ядром в программе GRAZING ограничены несколькими низколежащими колебательными квантами (квад-

Рис. 3. Полные сечения для чистого нейтронного подхвата (кружки) и подхвата нейтронов со срывом одного (треугольники) и двух протонов (квадраты) в реакциях ⁴⁰Ca + ⁹⁶Zr с $E_{lab} = 152 \text{ МэВ}(a)$, ⁹⁰Zr + ²⁰⁸Pb с $E_{lab} = 560 \text{ МэВ}(b)$ и ⁴⁰Ca + ²⁰⁸Pb с $E_{lab} = 249 \text{ МэВ}(b)$. Сплошные значки – экспериментальные данные [4] (a, b), [12, 13, 14] (b), пустые значки – расчеты по программе GRAZING с $\delta^{v} = \delta^{\pi} = 6$ (a), $\delta^{v} = \delta^{\pi} = 8$ (b).

рупольными и октупольными) и энергией гигантского дипольного резонанса, т.е. порядка 20 МэВ.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Экспериментальные данные по малонуклонным передачам в реакциях ⁴⁰Ca + ⁹⁶Zr, ⁹⁰Zr+²⁰⁸Pb, ⁴⁰Ca + ²⁰⁸Pb из работ [4, 7–9] были сопоставлены с результатами расчетов с помощью программы GRAZING. Как показано на рис. $3a, \delta$, по передачам нескольких (до 8) нейтронов имеется хоро-

Рис. 4. Рассчитанные по программе GRAZING с $\delta^{v} = \delta^{\pi} = 8$ угловые распределения в системе центра масс для чистого нейтронного подхвата (сплошная кривая) и подхвата нейтронов со срывом двух протонов (штриховая кривая) в реакции ⁴⁰Ca + ²⁰⁸Pb с $E_{lab} = 249$ МэВ. Точки и кружки – экспериментальные данные [13].

шее согласие между результатами расчетов и экспериментальными данными, которое почти не нарушает сопутствующая передача одного протона, а вот расчетные сечения с двумя переданными протонами уже сильно недооценивают данные эксперимента (рис. 3*в*). Это детально видно из угловых распределениях (дифференциальных сечений) реакции передачи ⁴⁰Ca + ²⁰⁸Pb, представленных на рис. 4. Аналогичная картина имеет место для по малонуклонных передач в реакциях ⁴⁰Ca + ¹²⁴Sn [10–12], ³²S + ²⁰⁸Pb [13], ⁴⁸Ti + ²⁰⁸Pb [14], ⁵⁸Ni + ²⁰⁸Pb [15].

В реакции 40 Ca + 96 Zr (рис. 3*a*) передача до шести нейтронов ядру Са и до двух протонов ядру ⁹⁶Zr указывают на то, что среднее число подхваченных при наиболее близком касательном столкновении ядер порядка единицы (см. рис. 1), среднее число сорванных протонов при этом примерно в 3 раза меньше. Расчеты с программой GRAZING удовлетворительно воспроизводят такие значения. Хотя при стандартном наборе параметров результаты расчетов с помощью программы GRAZING несколько отличаются от экспериментальных данных (при больших числах переданных нейтронов до порядка), включением учета испарения и небольшим варьированием параметров δ^{ν} , δ^{π} вблизи стандартного значения $\delta^{\nu} = \delta^{\pi} = 8$ согласие теории и эксперимента улучшается. В соответствии с рис. 2а для легких ядер более точный учет плотности нуклонных уровней вблизи уровня Ферми требует уменьшения значения параметров $\delta^{\nu}, \delta^{\pi}$ (в частности, для 40 Ca + 96 Zr до 6). Для тяжелых ядер вблизи

Рис. 5. Зарядовые (*a*) и энергетические (*б*) распределения продуктов реакции ⁵⁶Fe + ¹⁶⁵Ho c E_{lab} = 462 МэВ. Точки – экспериментальные данные [16], расчеты по программе GRAZING с параметрами $\delta^{\nu} = \delta^{\pi} = 8$ показаны кружками и сплошной линией, с $\delta^{\nu} = \delta^{\pi} = 3$ – треугольниками и штриховой линией.

свинца необходимо небольшое увеличение значений δ^{ν} , δ^{π} (в частности, для 90 Zr + 208 Pb до 8.5).

Многонуклонные передачи и глубоко неупругие реакции не описываются данной моделью. Это видно на примере реакции 56 Fe + 165 Ho [16] (см. рис. 5). Экспериментальные данные по многопротонным передачам и результаты расчетов по программе GRAZING одного порядка в узком интервале, соответствующем срыву и подхвату одного протона (см. рис. 5а). Вне этого интервала различие составляет несколько порядков. Программа GRAZING позволяет также описать энергетические распределения в малой окрестности (шириной порядка 20 МэВ) начальной энергии (см. рис. 5б). Аналогичная картина имеет место для многонуклонных передач и больших передач энергии в реакциях ⁸⁶Kr + ¹⁶⁶Er [17–19], ⁸⁴Kr + ²⁰⁹Bi [20], ¹³⁶Xe + ²⁰⁹Bi [21-24].

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 77 № 7 2013

Таким образом, квазиклассическая модель Винтера и ее компьютерная реализация — программа GRAZING достаточно хорошо описывают нейтронные передачи от одного до нескольких (6–8) нейтронов для ядер, близких к магическим ядрам ⁴⁰Ca, ⁹⁰Zr, ²⁰⁸Pb, для которых характерна сравнительно малая плотность нейтронных уровней вблизи уровня Ферми. Передачи большего числа протонов в рассмотренной модели недооцениваются. Малые потери энергии в пределах до 20 МэВ в модели описываются удовлетворительно.

ЗАКЛЮЧЕНИЕ

Проведенные расчеты и сравнение с экспериментальными данными позволяют лучше представлять возможности и границы применимости программы GRAZING. Это полезно и при анализе экспериментальных данных, и для совершенствования теоретических моделей касательных ядро-ядерных столкновений, и при планировании новых экспериментов, в том числе по получению новых атомных ядер вблизи границ протонной и нейтронной стабильности.

Работа выполнена при поддержке РФФИ, грант № 11-07-00583-а. Автор выражает благодарность за полезное обсуждение профессору В.И. Загребаеву, а также А.В. Карпову, А.С. Деникину, Ю.А. Музычке и М.А. Науменко.

СПИСОК ЛИТЕРАТУРЫ

- 1. Winther A. // Nucl. Phys. A 1995. V. 594. P. 203
- 2. Winther A. // Nucl. Phys. A 1994. V. 572. P. 191
- 3. http://personalpages.to.infn.it/~nanni/grazing/
- 4. Szilner S. et al. // Phys Rev. C. 2007. V. 76. 024604.
- 5. База знаний по низкоэнергетическим ядерным реакциям Nuclear Reaction Video http://nrv.jinr.ru/nrv/.
- 6. *Игнатюк А.В.* Статистические свойства возбужденных атомных ядер. М.: Энергоатомиздат, 1983. 176 с.
- 7. Szilne rS. et al. // Phys. Rev. C. 2005. V. 71. 044610.
- 8. Pollarolo G. // AIP Conf. Proc. 2006. V. 853. № 29. P. 29.
- Corradi L., Pollarolo G., Szilner S. // J. Phys. G: 2009. V. 36. 113101.
- 10. L. Corradi et al. // Phys. Rev. C. 1996. V. 54. P. 201.
- 11. Corradi L. et al. // Phys. Rev. C. 2000. V. 61. 024609.
- 12. Corradi L. // Nucl. Phys. A. 2001. V. 685. P. 37c.
- 13. Corradi L. et al. // Phys. Rev. C. 1994. V. 49. P. 2875.
- 14. Rehm K.E. et al. // Phys. Rev. C 1988 V. 37. P. 2629.
- 15. Corradi L., Pollarolo G., Winther A. // Phys. Rev. C. 2002. V. 66. 024606.
- 16. Hoover A.D., et al. // Phys. Rev. C. 1982. V. 25. P. 256.
- 17. Eyal Y. et al. // Phys. Rev. C. 1980. 1980. V. 21. P. 2509.
- 18. Tserruya I. et al. // Phys. Rev. Lett. C. 1981. V. 47. P. 16.
- 19. Tserruya I. et al. // Phys. Rev. C. 1982. V. 26. P. 2509.
- 20. Birkelund J.R. et al. // Phys. Rev. C. 1982. V. 26. P. 1984.
- 21. Schroder W.U. et al. // Phys. Rep. 1978. V. 45. P. 301.
- 22. Wilcke W.W. et al. // Phys. Rev. C. 1980. V. 22. P. 128.
- 23. Wollersheim H.J. et al. // Phys. Rev. C. 1981. V. 24. P. 2114.
- 24. Bondorf J.P. et al. // Phys. Rev. C. 1993. V. 48. P. 459.