NRV: Decay of excited nuclei

Quantity to calculate: Decay widths Survival Probability
Nucleus     Spin  J, h
Eexcitation, MeV min max points
Default parameters
Decay properties 1 1 1 1
g.s. deformation β2
g.s. shell correction δE
g.s. mass excess δM
saddle point β2
fission barrier Bfiss  
Level-density parameter:

α β γ
Moment of inertia:
Collective enhancement of level density
Kcoll=Krot(E)·φ(β2)+Kvib(E)·(1-φ(β2))  [4]
Kcoll=Krot(E) (deformed nuclei case)
Kcoll=Kvib(E) (spherical nuclei case)
Deformation dependence of collective enhancement
β20
Δβ2
Energy dependence of collective enhancement
Ecr MeV
ΔEcr MeV
Krot= ·
Kvib=exp( A2/3T4/3)  [5]
Kvib= ·βeff2·  [6]
βeff= + ΔN + ΔZ
ΔN (ΔZ) are the absolute values of the numbers of neutrons (protons) above or below nearest shell closure

[1] - P. Möller, et al., Atomic Data and Nuclear Data Tables, 2016, vol.109-110, p.1
[2] - M. Wang, et al. Chinese Physics C 36 (2012), p.1603.
[3] - A.V. Ignatyuk, et al., Sov. J. Nucl. Phys., 1975, vol.21, p.612; ibid., p.255
[4] - V.I. Zagrebaev, et al., Phys. Rev., 2001, vol.C65, p.014607
[5] - A.V. Ignatyuk, The statistical properties of the excited atomic nuclei
(Energoatomizdat, Moscow, 1983)
[6] - A.R. Junghans, et al., Nucl. Phys., 1998, vol.A629, p.635