Synthesis of superheavy nuclei: nearest and distant opportunities

- Fusion reactions
 - Elements 119 and 120 are on the way. What's the next?
 - Radioactive ion beams?
 - Filling the gap of not-yet-synthesized isotopes of SH elements (Z=106 116)
 - Narrow (hypothetical) pathway to the Island of Stability
- Neutron capture process
 - Astrophysical nucleosynthesis, SHE in cosmic rays
- Transfer reactions
 - Shell effects in damped collisions of heavy ions ?
 - Production of new neutron rich SH nuclei in transfer reactions

Valeriy Zagrebaev

for "Fusion-2014", February 25, 2014, New Delhi, India

We are still far from the Island of Stability

New elements 119 and 120 are coming !

Fusion reactions with Radioactive Ion Beams for the production of neutron rich superheavy nuclei ?

No chances today and in the nearest future

It is important to fill the Gap in superheavy mass area

Predicted cross sections are high enough to perform experiments at available facilities just now

experiment on 48Ca+239Pu is currently going on in Dubna...

Narrow pathway to the Island of Stability ? [VZ, A. Karpov and W. Greiner, Phys. Rev. C 85, 014608 (2012)]

New DC280 Cyclotron for SHE factory in Dubna

DC280: Intensity of some typical ion beams

20Ne	1⋅10 ¹⁴ pps		
48Ca	6·10¹³ pps		
50Ti	3⋅10¹³ pps		
70Zn	2,5·10¹³ pps		
86Kr	3⋅10¹³ pps		
100Mo	2·10¹² pps		
124Sn	2·10¹² pps		
136Xe	2·10¹³ pps		
208Pb	1⋅10 ¹² pps		
238U	1·10 ¹¹ pps		

Schedule of the SHE Factory creation

	2011	2012	2013	2014	2015	2016	
Experimental Building							
Cyclotron DC 280							
		•					
Main magnet yoke							
creation							
creation							
Equipment creation,							
acmulation							
completion.							
Assembling, testing							
First experiment							

Synthesis of SH nuclei in transfer reactions

- [1] E. K. Hulet et al., Phys. Rev. Lett. 39, 385 (1977).
- [2] M. Schaedel et al., Phys. Rev. Lett. 41, 469 (1978).
- [3] H. Essel, K. Hartel, W. Henning, P. Kienle, H. J. Koerner, K. E. Rehm, P. Sperr, W. Wagner, and H. Spieler, Z. Phys. A 289, 265 (1979).
- [4] H. Freiesleben, K. D. Hildenbrand, F. P["]uhlhofer, W. F. W. Scneider, R. Bock, D. V. Harrach, and H. J. Specht, Z. Phys. A **292**, 171 (**1979**).
- [5] H. Gaeggeler et al., Phys. Rev. Lett. 45, 1824 (1980).
- [6] M. Schaedel et al., Phys. Rev. Lett. 48, 852 (1982).
- [7] K. J. Moody, D. Lee, R. B. Welch, K. E. Gregorich, G. T. Seaborg, R. W. Lougheed, and E. K. Hulet, Phys. Rev. C 33, 1315 (1986).
- [8] R. B. Welch, K. J. Moody, K. E. Gregorich, D. Lee, and G. T. Seaborg, Phys. Rev. C 35, 204 (1987).

•••

... a long history.

Isotopes of Fm and Md were synthesized 30 years ago.

What is real dynamics of heavy-ion collisions ?

Time Dependent Hartree-Fock calculations (A.Umar & V.Oberacker, C.Simenel, K.Yabana)

Nucleons move in volumes (mean fields) of both nuclei !

- Perturbative approches are not applicable for description of nucleon transfers
- DNS model with two isolated mean fields is contrary to physics
- Two body potential energy V(R) has no meaning at $R < R_{contact} : V \rightarrow V(shape)$

Microscopic:TDHF or time dependent Schrodinger calculationsSemi-microscopic:Two-Center Shell Model + Langevin-type equations

 $\frac{dR}{dR} = \frac{p_R}{p_R}$ Variables: {R, θ , ϕ_1 , ϕ_2 , β_1 , β_2 , η_7 , η_N } $\frac{\frac{dt}{d\theta}}{\frac{d\theta}{dt}} = \frac{\frac{\mu_R}{\ell}}{\frac{\mu_R}{\mu_R R^2}}$ Most uncertain parameters: μ_0, γ_0 - nuclear viscosity and friction, λ_Z^0 , λ_N^0 - nucleon transfer rate $\frac{d\varphi_1}{dt} = \frac{L_1}{\mathfrak{I}_1}, \ \frac{d\varphi_2}{dt} = \frac{L_2}{\mathfrak{I}_2}$ $\eta = \frac{A_{1} - A_{2}}{A_{1} + A_{2}}$ $\eta_{Z} = \frac{Z_{1} - Z_{2}}{Z_{1} + Z_{2}}$ $\frac{d\beta_1}{dt} = \frac{\beta_1}{p_{\beta_1}}$ φ1 R A₁ b θ. $\frac{d\beta_2}{dt} = \frac{p_{\beta 2}}{\mu_{\beta 2}}$ $\eta_{N} = \frac{N_{1} - N_{2}}{N_{1} + N_{2}}$ $\langle \varphi_2 \rangle$ A_2 $\frac{d\eta_{z}}{dt} = \frac{2}{Z_{cN}} D_{z}^{(1)} + \frac{2}{Z_{cN}} \sqrt{D_{z}^{(2)}} \Gamma_{z} (t)$ $\lambda_{\mathbf{Z}}^{\mathbf{0}} = \lambda_{\mathbf{N}}^{\mathbf{0}} = \frac{\lambda_{\mathbf{Q}}^{\mathbf{0}}}{2}$ $\frac{d\eta_{\rm N}}{dt} = \frac{2}{N_{\rm CN}} D_{\rm N}^{(1)} + \frac{2}{N_{\rm CN}} \sqrt{D_{\rm N}^{(2)}} \ \Gamma_{\rm N} (t)$ $\frac{dp_R}{dt} = -\frac{\partial V}{\partial R} + \frac{\ell^2}{\mu_R R^3} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right)\frac{\partial \mu_R}{\partial R} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2}\frac{\partial \mu_{\beta_1}}{\partial R} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2}\frac{\partial \mu_{\beta_2}}{\partial R} - \gamma_R \frac{p_R}{\mu_R} + \sqrt{\gamma_R T}\Gamma_R(t)$ $\frac{d\ell}{dt} = -\frac{\partial V}{\partial \vartheta} - \gamma_{\text{tang}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) R + \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dL_1}{dt} = -\frac{\partial V}{\partial \varphi_1} + \gamma_{\text{tang}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_1 - \frac{a_1}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dL_2}{dt} = -\frac{\partial V}{\partial \varphi_2} + \gamma_{\text{tan}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_2 - \frac{a_2}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dp_{\beta_1}}{dt} = -\frac{\partial V}{\partial \beta_1} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_1} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_1} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_1} - \gamma_\beta \frac{p_{\beta_1}}{\mu_{\beta_1}} + \sqrt{\gamma_{\beta_1} T} \Gamma_{\beta_1}(t)$ $\frac{dp_{\beta_2}}{dt} = -\frac{\partial V}{\partial \beta_2} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_2} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_2} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_2} - \gamma_\beta \frac{p_{\beta_2}}{\mu_{\beta_2}} + \sqrt{\gamma_{\beta_2} T} \Gamma_{\beta_2}(t)$

14

Quite satisfactory agreement with experiments on DI scattering (energy, angular, charge and mass distributions)

Good agreement with experiment on multi-nucleon transfer

Heavy ions

Light ions (the model works !?)

Production of new neutron rich heavy nuclei located along the last "waiting point" of astrophysical nucleosynthesis

(VZ and W.Greiner, Phys.Rev.Lett., 101, 2008)

17

Production of superheavies in multi-nucleon transfers (choice of reaction is very important)

18

Shell effects: Pb valley normal (symmetrizing) quasi-fission

inverse (anti-symmetrizing) quasi-fission

U-like beams give us more chances to produce neutron rich SH nuclei in "inverse quasi-fission" reactions

experiment is scheduled for March at GSI (we want to see Pb+x, then Pb+Ca+Pb)

238U + 248Cm. Primary fragments

Production of transfermium nuclei along the line of stability looks quite possible (only if there are shell effects!?)

Rather wide angular distribution of reaction fragments: a new kind of separators is needed

22 experiments on Au+Th and U+Th are currently going on in Texas (without separators)

Experimental evidences on "inverse" quasi-fission are needed

experiment is scheduled for May in Dubna

Summary

- Elements 119 and 120 can be really synthesized in the Ti and/or Cr fusion reactions with cross sections of about 0.05 0.02 pb. Perhaps they are the heaviest SH elements with $T_{1/2} > 1 \ \mu s$?
- The gap in SH mass area (Z=106-116) can be filled in fusion reactions of 48Ca with lighter isotopes of actinides (239Pu, 241Am, 243Cm, ...).
- The narrow pathway to the island of stability probably exists !?
- Search for long-living SH nuclei in cosmic rays is worth-while. Relative yield of SH / Pb in astrophysical r process is about 10⁻¹².
- Multi-nucleon transfer reactions can be really used for synthesis of neutron enriched long-living SH nuclei located along the beta-stability line. U-like beams are needed as well as new kind of separators.
- Shell effects in production of trans-target nuclei (inverse quasi-fission) should be proved experimentally at last.