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Sub-barrier fusion of neutron-rich nuclei and its astrophysical consequences

V. I. Zagrebaev and V. V. Samarin
Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Moscow Region, Russia

Walter Greiner
Frankfurt Institute for Advanced Studies, J. W. Goethe-Universität, Frankfurt, Germany

(Received 15 December 2006; revised manuscript received 8 February 2007; published 27 March 2007)

Near-barrier fusion of neutron-rich nuclei was studied within the semiempirical channel coupling model
for intermediate neutron rearrangement and within the time-dependent three-body Schrödinger equation. The
possibility of neutron transfer with positive Q values considerably increases the barrier penetrability. A huge
enhancement of deep sub-barrier fusion probability was found for light neutron-rich weakly bound nuclei (such
as 6He). This may be quite important for astrophysical primordial and supernova nucleosynthesis.
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I. INTRODUCTION

The reactions with neutron-rich nuclei have recently re-
ceived increased interest as well experimentally as theoreti-
cally. The possibility to perform experiments with neutron-rich
radioactive fission fragments [1] opens new doors for the
production and study of new isotopes and, probably, for
synthesis of new superheavy elements. Also great efforts have
been devoted to studying near-barrier fusion of light weakly
bound nuclei [2–7]. Unusual effects are expected here both
from the halo structure of these nuclei and from the specific
tunneling mechanism of the composed weekly bound system
that is of general interest for quantum theory [8].

Neutron transfer cross sections are known to be rather large
at near-barrier energies of heavy-ion collisions—the result of
significant extension of the wave functions of neutrons from
the outer nuclear shells (we call them “valence neutrons”).
As a consequence there is a prevailing view that coupling
with the transfer channels should play an important role in
sub-barrier fusion of heavy nuclei. However, if an influence of
collective excitations (rotation of deformed nuclei and surface
vibrations) on near-barrier fusion of heavy nuclei is well
studied experimentally and well understood theoretically, the
role of neutron transfer is not so clear.

Such a situation can be explained by a series of difficulties.
First, in the experimental study of the effect, one needs to
compare the fusion cross sections of different combinations
of nuclei, which among other things have different collective
properties. Therefore it is not so easy to single out the role of
neutron transfer from the whole effect of sub-barrier fusion
enhancement. Second, it is very difficult, for many reasons,
to take into account explicitly the transfer channels within a
consistent channel coupling (CC) approach used successfully
for the description of collective excitations in the near-barrier
fusion processes. As a result, we are still far from a good
understanding of the subject.

Some time ago Stelson et al. [9] proposed an empirical
distribution of barriers technique and found that many ex-
perimental data may be well described by a flat distribution
of barriers with a lower-energy cutoff, which corresponds
to the energy at which the nuclei come sufficiently close

together for neutrons to flow freely between the target and
projectile (neck formation). There is no doubt that flow of
neutron matter into or out of the region between the target and
projectile regulates somehow the fusion process. However,
from recent experiments it becomes clear that the neutron
excess may increase the nuclear radius, thus decreasing the
height of the Coulomb barrier. But the reduced fusion cross
sections (plotted as a function of the ratio of center-of-mass
energy to the Coulomb barrier) demonstrate more or less the
same behavior at near-barrier region even for very neutron-rich
systems like 64Ni+132Sn as compared with 64Ni+112−124Sn [10]
and 38S +208Pb as compared with 32S +208Pb [11]. Moreover,
for some combinations fusion of neutron rich isotopes was
found to be less probable than fusion of the same nuclei with
smaller number of neutrons. For example, sub-barrier fusion
probability for 48Ca+48Ca is less than for 40Ca+48Ca [12]. The
same holds for 48Ca +96Zr [13] as compared with 40Ca +96 Zr.
Thus we may definitely conclude that the neutron excess itself
does not lead to additional fusion enhancement.

At the same time more and more experimental data
appear testifying additional sub-barrier fusion enhancement
due to neutron transfer with positive Q values. Indeed, in
all the neutron-rich combinations listed above, 48Ca+ 48Ca,
48Ca +96Zr, 38S + 208Pb, 64Ni+132Sn, intermediate neutron
rearrangement may occur only with negative or very small Q

values. However, if one compares the fusion cross sections of
18O+58Ni (Q2n = +8.5 MeV) with 16O+60Ni [14], 40Ca+48Ca
(Q4n = +3.9 MeV) with 48Ca + 48Ca [12], and 40Ca + 96Zr
(Q2n = +5.5 MeV) with 40Ca+90Zr [15], one may find that in
all the cases sub-barrier fusion turns out to be more probable
just for those combination in which an intermediate neutron
rearrangement with positive Q value is possible (see below).

The role of neutrons should be even more important in
fusion of light neutron-rich weakly bound nuclei. Some model
calculations predicted that the weak binding energy of the
nuclei should significantly suppress the near-barrier fusion
cross section [16–19]. However, the extended “halo” structure
of exotic nuclei, such as 6He or 11Li, may also influence the
fusion probability. In Refs. [20–23] some enhancement of the
fusion probability for weakly bound nuclei was found due to
the excitation of a low-lying soft-dipole mode and due to the
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strong coupling with the breakup channels. See also the recent
review articles on the problem of fusion of weakly bound
nuclei [24,25].

An experimental situation is also quite uncertain. A
significant enhancement was reported for the 6He + 209Bi
fusion reaction compared to the one expected according to
the standard model [2,3]. The same was also found at first
for sub-barrier fusion of 6He with 238U as compared with
fusion of 4He [4]. However, it is rather difficult to make an
unambiguous interpretation of these results. In the 4,6He+209Bi
fusion reactions compound nuclei are produced that differ both
in excitation energies and decay properties, which makes it
difficult to compare directly the yields of evaporation residues.
In a fusion-fission reaction such as 6He +238 U (with detection
of fission fragments only) it is difficult to distinguish the
process of complete fusion from other channels contributing to
the total yield of the fission fragments. Finally it was concluded
that the observed enhanced yield of the fission fragments
in this reaction at sub-barrier energies could be attributed
mainly to 2n-transfer reactions to the excited states of 240U
(with its subsequent fission) and, thus, there is no enhancement
at all of the fusion probability for 6He [6]. Thus, no matter how
surprising it may seem, but until now there is no consensus
(neither in theory nor in experiment) on the extent to which
the sub-barrier fusion of weakly bound nuclei differs from
fusion of ordinary ones.

In this article we study an influence of intermediate
neutron rearrangement on the sub-barrier fusion of atomic
nuclei. In Sec. II we use the semiempirical channel coupling
approach to analyze available experimental data on fusion of
neutron-rich nuclei and make some predictions. In Sec. III we
solve numerically a time-dependent three-body Schrödinger
equation to find more clear answers on the two questions.
(1) What happens with valence neutrons when nuclei approach
each other? (2) How influences the rearrangement of valence
neutrons on fusion of nuclei? Astrophysical consequences of a
possible deep sub-barrier fusion enhancement for light neutron
rich nuclei is discussed in Sec. IV.

II. NEUTRON REARRANGEMENT WITH
POSITIVE Q VALUE

As mentioned above, for some combinations of nuclei
neutron transfers with positive Q value are possible. It is rather
difficult (if possible at all) to use the standard CC method for
the description of the process of neutron transfer in fusion
reactions (partly due to impossibility of a choice of a complete
set of the orthogonal basic functions for a decomposition of the
total wave function). That is why the semiempirical channel
coupling [26,27] and semiclassical [28] models have been
recently proposed to study an influence of neutron transfers on
a fusion process. In Ref. [28] it was assumed that the particle
transfer degrees of freedom lead only to additional spread
of the dissipated energy and play a minor role, whereas the
sub-barrier fusion enhancement is mainly due to the adiabatic
polarization term caused by the surface vibrations. In contrast
with this, in the models proposed in Refs. [26] and [27] it is a
gain in energy obtained due to an intermediate neutron transfer

with Q > 0, which may additionally increase the sub-barrier
fusion probability.

The fusion cross section may be estimated rather accurately
using the concept of so-called “barrier distribution function,”
f (B), arising due to the multidimensional character of the
real nucleus-nucleus interaction. The quantum penetrability
of the Coulomb barrier is calculated here in the following
way: T (E, l) = ∫

f (B)P0(B; E, l)dB, where P0(B; E, l) is
the penetration probability of one-dimensional barrier (of
height B) at a given center-of-mass energy E and angular
momentum l. P0 may be approximated, for example, by the
usual Hill-Wheeler formula [29].

The barrier distribution function f (B), which satisfies the
normalization condition

∫
f (B)dB = 1, may be calculated

within the consistent CC model [30,31] using experimental
properties of low-lying collective excited states of the nuclei.
It may be also approximated basing on the multidimensional
nucleus-nucleus interaction V12(r; �β1, θ1, �β2, θ2), where �β =
{βλ} are the dynamic deformations of the projectile and target
(λ = 2, 3, ...) and θi=1,2 are the orientations of statically
deformed nuclei. Such potential energy is shown in Fig. 1
for the case of 64Ni +132 Sn interaction taking into account
quadrupole dynamic deformations of both nuclei. The surface
rigidities were calculated using the values of 1.35 MeV
and 4.04 MeV for E2+ excited states in 64Ni and 132Sn,
correspondingly.

The following expression was proposed in Ref. [32] as the
simplest approximation for the barrier distribution function

f (B) = N




exp
(

−
[B − Bav

�1

]2)
, B < Bav

exp
(

−
[B − Bav

�2

]2)
, B > Bav,

(1)

where Bav = (B1 +B2)/2. In the case of spherical col-
liding nuclei B1 is the height of the barrier at zero dy-
namic deformation and B2 is the height of the saddle

point (B2 = V12(r; �βsd
1 , �βsd

2 ) < B1) calculated with realistic
vibration properties of the nuclei, i.e., with the surface
stiffness parameters obtained from the experimental values
of the excited vibrational states (see Fig. 1). For statically
deformed nuclei B1 and B2 are the heights of the Coulomb
barriers calculated for the “side-by-side” and “nose-to-nose”
orientations, correspondingly. N (�1,�2) is the normalization
coefficient and �2 = (B1 − B2)/2. Experiments and the
theoretical analysis show that for heavy nuclear systems
the barrier distribution function is usually asymmetric and
the value of �1 is, as a rule, less than the value of �2 by 1 or
2 MeV.

Let us now assume that in addition to the intermediate
excitations of collective states [already taken into account
by the barrier distribution function f (B)] an intermediate
neutron transfer (neutron rearrangement) may also occur
during the fusion process. If such rearrangement takes place at
relatively large distances, before nuclei reach the Coulomb
barrier (see below), then the incoming flux penetrates the
multidimensional barrier in the different neutron transfer
channels. Let us denote by αk(E, l; Q) the probability for the
transfer of k neutrons at the center-of-mass energy E and
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(a)

(c) (b)

FIG. 1. Potential energy of 64Ni +132 Sn. The proximity potential
is used for the nuclear interaction and the surface stiffness parameters
are used that reproduce the experimental energies of the 2+ excited
states in the nuclei. (a) Landscape of the potential energy surface.
The saddle point and the potential barrier of spherical nuclei (β = 0)
are shown by crosses. The ridge of the barrier is shown by the dashed
line, whereas the dotted line corresponds to the contact distance of
the two nuclei. The incoming flux is shown schematically by the
gray-shaded arrow. (b) Potential energy at the ridge of the two-
dimensional barrier, i.e., along the dashed line passing through the
saddle point. (c) Empirical barrier distribution function f (B) defined
by Eq. (1).

at the relative motion angular momentum l in the entrance
channel to the final state with Q � Q0(k), where Q0(k)
is a Q value for the ground-state-to-ground-state transfer
reaction. Then the total penetration probability may be written
as [27]

T (E, l) =
∫

f (B)
1

Ntr

∑
k

∫ Q0(k)

−E

αk(E, l; Q)

×P0(B; E + Q, l) dQdB, (2)

where Ntr = [�k

∫
αk(E, l; Q)dQ] is the normalization

constant and α0 = δ(Q) (fusion without neutron transfer).
In heavy-ion collisions the de Broglie wavelength of relative

motion is usually less than the Coulomb barrier distance,
RB . In that case a semiclassical approximation may be
used, in principle, to estimate roughly the neutron transfer
probability. Assuming predominance of sequential neutron
transfer mechanism, which means multiplication of transfer

probabilities, one get αk(E, l; Q) ∼ e−2ξD(E,l), where D(E, l)
is the distance of closest approach of the two nuclei and
ξ = ξ (ε1) + ξ (ε2) + ... + ξ (εk) for sequential transfer of k

neutrons, ξ (εi) =
√

2µnεi/h̄
2 and εi is the separation energy

of the i-th transferred neutron. Experiments show that the
transfer probability becomes very close to unity at a short
distance between the two nuclei, when their surfaces are well
overlapping. We denote this distance by D0 = d0(A1/3

1 +A
1/3
2 ),

where the parameter d0 has the value of about 1.40 fm.
In heavy-ion few-neutron transfer reactions the final states
with Qopt ≈ 0 are populated with largest probability due to
mismatch of incoming and outgoing waves. The Q window
may be approximated by the Gaussian exp (−C[Q − Qopt]2)
with the constant C = RBµ12/(4h̄2ξB) [33], where µ12 is the
reduced mass of the two nuclei. Finally, the transfer probability
may be estimated in the following way

αk(E, l; Q) = Nke
−C[Q−Qopt]2

e−2ξ [D(E,l)−D0], (3)

where Nk = {[ ∫ Q0(k)
−E

exp( − C[Q − Qopt]2)dQ}−1 and the
second exponent has to be replaced by 1 for D(E, l) <D0.

Expression similar to Eq. (2) for the transmission proba-
bility (taking into account intermediate neutron transfers) was
proposed also in Ref. [26]. The neutron transfer probability
term αk(E, l; Q) depending on the incident energy and angular
momentum (not only on the Q value) is a distinction in kind
between the two models. This term is very important for deep
sub-barrier energies when the distance of closest approach
D(E, l) is rather large and neutron transfer probability is low.
In addition to correct calculation of the effects of neutron
transfer on sub-barrier fusion, Eq. (3) may be used also
for a reasonable simultaneous description (with the same
nucleus-nucleus interaction potential) of the elastic scattering
and few neutron transfer angular distributions as well as the
total neutron transfer cross sections [27], which, among other
things, significantly reduces uncertainty in the values of the
used parameters.

From Eq. (2), one can see that in reactions with negative
values of all Q0(k) there is no additional enhancement
of the total penetration probability of the Coulomb barrier
T (E, l) due to the neutron rearrangement, because the “partial”
penetration probability P0(B; E + Q, l) becomes smaller for
negative Q values as compared to Q = 0. It means that
intermediate neutron transfers with zero and/or negative Q

values (most probable processes) really take place but cannot
enhance the penetration probability. If, however, Q0(k) are
positive for some channels, in spite of the lower transfer
probability to the states with positive Q values as compared
to Q = 0, the total penetration probability may significantly
increase due to a gain in the relative motion energy in the
channels with Q > 0. In other words, an intermediate neutron
transfer to the states with Q > 0 is, in a certain sense, an
“energy lift” for the two interacting nuclei.

At first sight, this interpretation looks quite different from
the well-known fusion enhancement due to surface vibrations
or rotation of nuclei leading to decrease of potential barrier
in some channels. However, if we consider the potential
energy of the two interacting nuclei as a function of a number
of transferred neutrons, V12(r; �N ) (in addition to other
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(a)

(b)

(c)

FIG. 2. Fusion cross sections for 16O + 60Ni and 18O + 58Ni
[14] (a), 40Ca + 48Ca and 48Ca + 48Ca [12] (b), 40Ca + 90Zr
and 40Ca +96 Zr [15] (c). Dashed curves are the CC calculations for
the 16O +60Ni, 48Ca +48Ca, and 40Ca +90 Zr fusion reactions. Dotted
curves are the CC calculations for the 18O +58 Ni, 40Ca +48 Ca, and
40Ca +96 Zr fusion reactions, whereas the solid curves are the results
of calculations for the same reactions in accordance with formula (2),
i.e., taking into account intermediate neutron rearrangement.

variables), then we will find that the height of the Coulomb
barrier for some �N �= 0 is lower than in the entrance channel
(�N = 0) for those nuclear combinations in which neutron
transfer with positive Q value is possible. Thus, we may also
interpret this effect in the usual way as a lowering of the
Coulomb barrier due to the channel coupling (see also the next
section).

In Fig. 2 the sub-barrier fusion cross sections are
shown for different combinations of colliding nuclei:
18O +58 Ni (Q0(1n) = +0.96 MeV,Q0(2n) = +8.2 MeV)
compared with 16O + 60Ni (all Q0(k) < 0), 40Ca + 48Ca
(Q0(2n) = +2.6 MeV,Q0(4n) = +3.9 MeV) com-
pared with 48Ca + 48Ca (all Q0(k) < 0), and 40Ca + 96Zr
(Q0(1n) = +0.5 MeV,Q0(2n) = +5.5 MeV,Q0(3n) =
+5.2 MeV,Q0(4n) = +9.6 MeV) compared with 40Ca +90 Zr
(all Q0(k) < 0). One can see that the sub-barrier fusion proba-

bilities are much higher for the combinations of nuclei where a
rearrangement of neutrons with positive Q values is possible.
Moreover, for such combinations the standard CC approach
cannot properly describe experimental data by any reasonable
variation of parameters, whereas for other combinations this
method demonstrates very nice agreement with experiment.
Additional fusion enhancement here is reproduced quite well if
we assume the intermediate rearrangement of valence neutrons
and apply Eqs. (2) and (3) for a calculation of the cross sections
(see Fig. 2). Significant sub-barrier fusion enhancement was
found recently also for the 40Ca+94Zr combination [34] (similar
to 40Ca +96 Zr) in which an intermediate neutron transfer (up
to four neutrons) with positive Q values is possible too.

As mentioned above, the neutron excess (leading normally
to the lowering of the Coulomb barrier due to increase of
the nuclear radius) does not lead obligatory to additional
sub-barrier fusion enhancement. It was confirmed recently in
the experiment on fusion of extremely neutron rich nuclei
[10]. The enhancement in the 64Ni + 132Sn fusion reaction
relative to lighter Sn isotopes was found to be not larger
than would be expected due to the larger nuclear radius of
132Sn and, thus, neutron transfer does not appear to play a
major role in the sub-barrier fusion for this system. 132Sn
is really not so much different from 124Sn. Two-neutron
separation energies differ by less than 2 MeV for these nuclei.
In this connection, we may expect a noticeable sub-barrier
fusion enhancement only for the 64Ni +134 Sn combination, in
which neutron transfers with rather large positive Q values
(Q0(1n) = 2.35 MeV,Q0(2n) = 8.9 MeV) are possible
(obviously, the effect should be even larger for the 58Ni+134Sn
combination).

In Fig. 3 the cross sections for the 64Ni + 132Sn and
64Ni +134 Sn fusion reactions are shown calculated with and
without intermediate neutron rearrangement. A proximity
potential [35] (giving the barriers of 155.8 and 155.4 MeV,

FIG. 3. Fusion cross sections for 132Sn+64 Niand 134Sn+64Ni cal-
culated with (solid curves) and without (dashed curves) intermediate
neutron rearrangement. Experimental data for 132Sn+64 Ni are taken
from Ref. [1].
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correspondingly) was used to calculate the barrier penetrability
P0(B; E, l) in Eq. (2), and the experimental energies of the
2+-excitations in 64Ni and 132Sn were used to find the barrier
distribution function f (B) (see Fig. 1). As can be seen, the
neutron rearrangement significantly increases the sub-barrier
fusion cross section only for the 64Ni +134 Sn combination and
plays a minor role for the 64Ni +132 Sn fusion reaction.

It is clear that a much stronger effect from the neutron
transfer with positive Q values can be expected in fusion of
light neutron-rich weakly bound projectiles with stable targets.
To avoid additional ambiguities (see above) one may propose
to measure the evaporation residue (EvR) cross sections for
reactions, in which the same compound nucleus is formed,
such as 6He+AX → CN and 4He+A−2X → CN, for example.
In that case any difference in the EvR cross sections may
originate only from the difference in the entrance channels of
the two reactions. The promising reactions of such type are
6He +206 Pb and 4He +208Pb with the formation of α-decayed
212−xnPo compound nuclei. In the first combination there are
intermediate neutron transfer channels with very large positive
Q values: 6He + 206Pb → 5He + 207Pb(Q0 = 4.9 MeV) →
4He + 208Pb(Q0 = 13.1 MeV) → 212Po. Of course, as
mentioned above, the probability for neutron transfer to the
ground states is rather small, but the total possible gain in
energy is very large here as compared with the height of the
Coulomb barrier (which is about 20 MeV) and has to reveal
itself in the fusion probability of 6He compared to 4He.

A schematic picture of the described “sequential fusion”
mechanism in sub-barrier collision of 6He with 206Pb is shown
in Fig. 4 taken from [36]. When the colliding nuclei approach,
two valence neutrons may be transferred from 6He to the
ground and low-lying states of 208Pb with a small, but not
negligible probability. In that case, the charged core finds itself
with kinetic energy well above the Coulomb barrier and may
easily fuse with the target. Coupling to the continuum states
of weakly bound 6He nucleus could be also very important
(due to a large break-up cross section for 6He in collisions
with heavy targets [37]), and it is not taken into account
by Eq. (2). However recent calculations performed within the
CDCC model [23] show that the coupling to the continuum
influences the near-barrier fusion cross section (increasing it)
with a factor less than 1.5.

The experiment on fusion of 6He with 206Pb target was
proposed first in Ref. [27], where the yield of Po isotopes
was predicted several orders of magnitude (!) higher as
compared with the 4He + 208Pb fusion reaction (see Fig. 5).
Recently at the Joint Institute for Nuclear Research (Dubna)

FIG. 4. Schematic picture of sequential fusion of 6He.

FIG. 5. Cross sections for the production of Po isotopes in the
6He+206Pb (solid curves) and 4He+208Pb (short dashed curves) fusion
reactions calculated in Ref. [27]. Open circles show experimental
yield of 211Po in the 4He +208 Pb fusion reaction [38] (1n channel).
Solid squares are the cross sections for production of 210Po in the
6He+206 Pb fusion reaction (2n channel) measured recently in Dubna
[7]. Long-dashed curve includes the effect of the energy spread of the
6He beam for the calculated 2n-channel cross sections. Arrows at the
energy axis show the corresponding Coulomb barriers for 6He (left)
and 4He (right) which are very close to each other.

the corresponding experiment has been performed [7] that
completely confirmed our expectations. The activation method
was used in this experiment in which a stack of six 206Pb
targets, each 600–700 µg/cm2 thick, with 20-µm Al foils
inserted in between to reduce the beam energy from 23 to
13 MeV. It was irradiated with the 6He beam giving the
six data points shown in Fig. 5. Unfortunately this method
gives rather large energy spread of the 6He beam inside the
target. As can be seen from Fig. 5, at sub-barrier energies the
fusion cross section is falling exponentially and the energy
spread may distort significantly the experimental data. To
estimate this effect we averaged the calculated cross sections
for the 2n-channel over the beam width assuming a gaussian
distribution with the width of 3 MeV. The result is shown by
the long-dashed curve in Fig. 5. Indeed, at the beam energy
of 12.5 MeV this effect increases the cross section almost
by two orders of magnitude. Thus, new experiments are very
desirable to measure the fusion cross sections in this region
more accurately. However, as can be seen from the figure, at
deep sub-barrier energies the bare fusion probability of 6He
with lead target is definitely much larger (about 1000 times at
15 MeV) as compared to the fusion of 4He.

Quite recently the cross section for the fusion of 9Li with
70Zn was measured at near and sub-barrier energies [39].
The observed fusion excitation function shows significant
sub-barrier fusion enhancement which can not be described
within the standard CC calculations. Neutron rearrangement
with positive Q values—9Li + 70Zn → 8Li + 71Zn(Q0 =
1.77 MeV) → 7Li +72Zn(Q0 = 8.62 MeV)—is possible for
this reaction which may significantly increase the sub-barrier
fusion probability. We performed an analysis of this reaction
using the same nucleus-nucleus potential as in Ref. [39]
(Woods-Saxon type potential with V0 = −105 MeV, r0 =
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(a)

(b)

FIG. 6. Fusion cross sections (a) and barrier distribution function,
d2(Eσ )/dE2 (b) for the fusion reactions 9Li +70Zn and 11Li +68Zn.
Experimental data are for the 9Li +70 Zn fusion reaction taken from
Ref. [39].

1.12 fm, a = 0.65 fm). One-dimensional barrier penetration
model gives the result shown in Fig. 6 by the dashed curves.
Assuming that the lowest excitation energies in 9Li (2.6 MeV)
and 70Zn (0.88 MeV) correspond to the quadrupole vibrations
of these nuclei we calculated the effect of coupling with surface
vibrations which is shown in Fig. 6 by the dotted curves. This
effect is really not so much and cannot explain the observed
fusion enhancement. Then we took into account the effect
of neutron rearrangement as described above. Intermediate
neutron transfer noticeably increases the sub-barrier fusion
probability but still insufficient to describe the deep sub-barrier
fusion cross section found in the experiment (see Fig. 6).
It could be due to more probable “di-neutron” transfer as
compared to the sequential neutron transfer used for the
calculation of the 9Li +70Zn fusion cross section.

Anyhow, fixing all the parameters, we calculated also the
cross section for the 11Li +68Zn fusion reaction leading to the
same compound nucleus and, thus, to the same evaporation
residues. Two-neutron separation energy for 11Li is only
0.3 MeV and the Q value is extremely large for the transfer of
two neutrons to the ground state of 70Zn,Q0(2n) = 15.4 MeV.
As a result the sub-barrier fusion cross section for this reaction
should be also significantly larger as compared to 9Li +70Zn.
Because 10Li is an unbound nucleus, we assumed here for the

two-neutron rearrangement channel a simultaneous transfer
of “di-neutron” with the corresponding separation energy
ε2n = 0.3 MeV. The obtained result is shown in Fig. 6.
Obviously the sub-barrier fusion probability for 11Li is much
larger than for 9Li. Note that the coupling to the breakup
channel may slightly decrease the fusion cross section for 11Li
at above and near-barrier energies. Thus, direct experimental
comparison of the yields of the evaporation residues in both
reactions at sub-barrier energies is of great interest.

III. MICROSCOPIC ANALYSIS

In spite of rather good agreement with experimental data
of the cross sections obtained within the semiempirical
approach of “sequential fusion” with intermediate neutron
rearrangement [27], we need to study this problem more
carefully on a microscopic basis to understand better the role of
valence neutrons in fusion processes (also to check the validity
of the semiempirical method which may be easily used for
estimations of the fusion cross sections). For that we studied
the process of sub-barrier fusion of atomic nuclei within a
three-body quantum model (two fusing nuclear cores plus
a valence neutron) solving the time-dependent Schrödinger
equation. We tried to find clear answers on the two questions:
(1) What happens with the valence neutrons when nuclei
approach each other? (2) What is the mechanism of the fusion
enhancement due to rearrangement of valence neutrons?

Note that a choice of the Jacobi coordinates for numerical
solution of the three-body time dependent Schrödinger equa-
tion is important. In Fig. 7 two sets of the Jacobi coordinates
are shown. Numerical calculations show that the first set of
the Jacobi coordinate (�ρ2(13), �ρ13) is quite appropriate for
description of the breakup process. However there is a bad
convergence of the results (over the partial waves of relative
motion of neutron and target nucleus) if one uses this system
of coordinate for the description of neutron transfer and fusion
processes. We found that the two-center Jacobi coordinates
(r, R) are most appropriate to describe neutron rearrangement
and fusion.

(a)

(b)

FIG. 7. Jacobi coordinates optimal for description of the system
consisting of two cores and a valence neutron at large (a) and short
(b) distances between the two cores.

035809-6



SUB-BARRIER FUSION OF NEUTRON-RICH NUCLEI AND . . . PHYSICAL REVIEW C 75, 035809 (2007)

To answer the first question we solved numerically the time-
dependent Schrödinger equation

ih̄
∂


∂t
=

[
− h̄2

2m3
�r3 + Vn(r3; r1(t), r2(t))

]

(r3, t), (4)

to investigate the evolution of the valence neutron’s wave
function 
(r3, t) in the field of the two heavy cores (m1,m2 �
m3) moving along the classical trajectories r1(t) and r2(t)
in the field of V12(R) = VC(R) + VN (R) (for nuclear part
of this interaction we used the proximity potential [35]). At
R � Rcont = R1 + R2 the neutron potential energy is defined
as Vn(r3; r1, r2) = V13(|r3 − r1|)+V23(|r3 − r2|). After fusion
Vn → VCN(|r3 − rCN|). We define the model potential by the
linear interpolation

Vn(r3; r1, r2) = (1 − ξ )VCN(|r3 − rCN|) + ξ [V13(|r3 − r1|)
+V23(|r3 − r2|)], (5)

where ξ = 1 at R � Rcont, ξ = 0 at 0 � R � Rint, ξ =
(R −Rint)/(Rcont −Rint) otherwise and Rint = |R1 −R2|. Note
that we solved the Schrödinger equation up to nuclei come in
contact. However, we defined the potential energy in the whole
space to avoid some nonphysical reflection effects in behavior
of the neutron wave function 
(r3, t).

Aiming mainly on a qualitative understanding of the process
we disregarded spin of the neutron. For the neutron-core
interactions we used the model Woods-Saxon type potentials

Vi3(r) = −V0i{1 + exp[(r − Ri)/a]}−1

+�Vi(r), i = 1, 2 (6)

with the small short-range repulsion �V (r) = �V0e
−(r/b)2

allowing one to reproduce somehow the realistic positions
of the single-particle states in the Fermi energy region. The
following parameters have been used in calculations: V0 =
63 MeV, r0 = 1.2 fm, a = 0.65 fm,�V0 = 5 MeV, b =
3 fm for 40Ca and V0 = 59.5 MeV, r0 = 1.15 fm, a =
0.65 fm,�V0 = 6.7 MeV, b = 3 fm for 96Zr. This potential
energy is shown in Fig. 8 depending on the internuclear
distance.

Numerical solution of Eq. (4) is started at t = 0 with
the initial conditions r1(t = 0), v1 = ṙ1(t = 0), r2(t = 0),

FIG. 8. Neutron potential energy in the 40Ca +96 Zr system
along the internuclear axis at different distances R = 14 fm, R =
12 fm, R = 10 fm, and R = 1 fm (solid, dashed, dot-dashed, and
dotted curves, respectively).

v2 = ṙ2(t = 0) for heavy cores located at a large dis-
tance from each other, |r1(0) − r2(0)| = Rm ∼ 50 fm,
where the nuclear interaction is negligible. For the neutron
wave function we chose the initial condition corresponding
to its bound state in one of the fragments 
(r3, t =
0) = exp[im3vj (0)r3/h̄]ϕnlm[r3 − rj (0)], j = 1, 2. For the
Coulomb interaction the values of r1(0), v1(0), r2(0), v2(0) can
be found in analytical form for a given impact parameter and
initial center-of-mass energy of collision [40].

Due to axial symmetry of the potential energy Vn(ρ, z; R)
the quasimolecular single particle states may be written as
�αλ(ρ, z, ϕ; R) = fαλ(ρ, z; R)exp( ± iλϕ) (where λ = |m| is
the projection of the angular momentum on the internuclear
axis), and the functions fαλ satisfy the equation

− h̄2

2m3

[
∂

ρ∂ρ

(
ρ

∂

∂ρ

)
+ ∂2

∂z2

]
fαλ

+
[
Vn(ρ, z; R) + h̄2λ2

2m3ρ2

]
fαλ = εαλfαλ(ρ, z; R), (7)

which may be solved numerically (see details in Ref. [41]).
Centrifugal potential h̄2λ2/2m3ρ

2 in Eq. (7) hinders neutron
tunneling through the narrow manhole along internuclear axis
(small values of ρ). Thus the neutron transfer decreases with
increasing λ and we found that it is most probable just
at λ = 0.

The two-center single-particle neutron levels εαλ(R) (quasi-
molecular states) are shown in Fig. 9 for collision of 96Zr
with 40Ca. At deep penetration of the nuclei (R � Rcont)
εα,λ(R) increases due to a small decrease of the nuclear
volume (we do not care of it here). Of course, it does not
occur at slow near-barrier collisions when the nucleons have
enough time to reach equilibrium distribution and the shape
of mono-nucleus satisfies to volume conservation (adiabatic
condition). However, for our calculations it is not important
because we do not consider evolution of the system after nuclei
come in contact.

We did not decompose the total wave function 
(r3, t) over
the molecular states and used them only for analysis of the
obtained results (see below). The time-dependent Schrödinger

FIG. 9. Two-center quasimolecular single particle neutron levels
in the 96Zr +40Ca nuclear system. Solid, dashed, and dotted curves
show the states with λ = 0, 1, and 2, respectively. 2d is the last
occupied level in 96Zr; 1f and 2p are unoccupied levels of 40Ca.
Vertical dotted and dash-dotted lines show positions of the Coulomb
barrier and the contact point, correspondingly.
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FIG. 10. Amplitude of the wave function of valence neutron
(initially located in the 2d state of 96Zr nucleus) at the three distances
between colliding nuclei shown by the small circles in the upper part
of the figure along with the probability to find the neutron in the 40Ca
nucleus.

equation (4) was solved directly using the finite difference
scheme proposed in Ref. [42] coupled with the fast Fourier
transformation. In Fig. 10 the probability density |
(r3, t)|2 is
shown for the valence neutron initially located in the 2d state
of 96Zr approaching a 40Ca nucleus in a head-on collision at
near-barrier center-of-mass energy E = 97 MeV.

Using this wave function we may estimate a rate of neutron
collectivization, that is a probability to find the valence neutron
into the volume of the nucleus-acceptor (note that this is
not a real transfer probability that has to be determined for
well-reseparated nuclei). Such probability can be calculated
by an integration of the wave function over the volume of the
acceptor nucleus

Pcol(t) =
∫

ω

|
(r3, t)|2d3r3, (8)

where the volume ω ≡ {z1 − z3 < (R + R1 − R2)/2, |r3 −
r1|<R1 + �r}, R = r1 − r2,�r ∼ 2 fm and R1,2 are
the radii of the colliding nuclei. Dependence of the neutron
collectivization on the distance between the two nuclei is
shown in upper part of Fig. 10. Thus, we may conclude that
spreading of the valence neutron’s wave function into the
volume of the other nucleus takes place before touching of
these nuclei and even before the colliding nuclei overcome the
Coulomb barrier. Among other things this supports the idea of
“sequential fusion” mechanism [27] discussed above.

Within the used model the two factors may significantly
enhance the fusion probability due to a neutron rearrangement.
First, at the barrier region some of the occupied levels may
decrease an energy (see Fig. 9) and, consequently, decrease
the channel adiabatic potential energy Vαα(R) = V12(R) +
εα(R) − εα(∞). Second, the transfer of the valence neutron
from its initial state α to unoccupied state β also changes
the channel potential energy: Vαβ (R) = V12(R) + εβ(R) −
εα(∞). The corresponding occupation probability of a given
quasimolecular state, pα , may be estimated as a projection of
the total wave function onto the quasimolecular single-particle
state �α

pα(t) =
∣∣∣∣
∫

�∗
α(r3, R(t))
(r3, t)d

3r3

∣∣∣∣
2

. (9)

Thus, the total effective potential energy ∼�βVαβ(R)pβ(R)
may significantly differ from the initial potential with “frozen”
neutrons, V12(R), see Fig. 11. This may lead to an enhancement
of the sub-barrier fusion probability and also to a nonuniform
energy dependence of the penetration probability (the result
of several channel barriers). Of course this is a qualitative
explanation because so far we used a classical motion for
the variable R. It should be noted also that not included in the
model residual nucleon-nucleon interactions may significantly
increase the probability of the neutron transfer to unoccupied
low-lying states.

To answer the second question one has to consider a full
three-body quantum model (including quantum motion and
tunneling along the variable R). For simplicity we solved
numerically the three-body one-dimensional time dependent
Schrödinger equation (keeping in mind a head-on collisions at
sub-barrier energies at which the valence neutron only moves
in one dimension along the internuclear axis)

ih̄
∂

∂t

(r, R, t) =

[
− h̄2

2µ

∂2

∂r2
− h̄2

2M

∂2

∂R2

+V12(R) + Vn(r, R)

]

(r, R, t), (10)
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(a) (b) FIG. 11. Channel nucleus-nucleus interac-
tions (a) and quasimolecular occupation prob-
abilities (b) for collision of 96Zr and 40Ca at
Ec.m. = 97 MeV: initial interaction V12 (dotted
curve), V2d,2d and the corresponding occupation
probability p2d (solid curves), V2d,1f and p1f

(dashed curves), V2d,2p and p2p (dot-dashed
curves).

where r = r3 − (m1r1 + m2r2)/(m1 + m2) is the distance of
the valence neutron from the center of mass of two colliding
nuclei, r1 = Rη1 − rη2, r2 = R(η1 − 1) − rη2, r3 = r(1 −
η2), η1 = m2/(m1 + m2), η2 = m3/(m1 + m2 + m3), 1/µ =

FIG. 12. Probability density |
(r, R, t)|2 for collision of 40Ca
with 96Zr at sub-barrier energy E = B − 10 = 90 MeV in the
one-dimentional quantum model. Solid curves show equipotential
levels for the potential energy V12(R) + Vn(r; R). t1 = 10−21s, t2 =
2 × 10−21s, t3 = 3 × 10−21s. Regions A, B, and C correspond to
the scattering (neutron remains in Zr nucleus), transfer and fusion
processes, correspondingly.

1/m3 + 1/(m1 + m2), 1/M = 1/m1 + 1/m2, see Fig. 7. In
contrast with Eq. (4), here we use the reduced masses for
relative motions meaning in future to apply Eq. (10) also for
description of sub-barrier fusion of not so heavy ions.

The initial condition for the solution of Eq. (10) consists
of the neutron bound wave function and the wave packet of
relative motion located at some large distance Rm


(r, R, t = 0) = Cϕn(r3 − r2)h(−)
0 (rA − r1)

× exp

[
− (rA − r1 − Rm)2

2a2
p

]
, (11)

where rA = (m2r2 + m3r3)/(m2 + m3), h(−)
0 (r) = G0(r) −

iF0(r),G0, F0 are the Coulomb wave functions and for the
width of the wave packet, ap, we used the value of 5 fm.

Equation (10) was also solved with the finite difference
scheme proposed in Ref. [42] coupled with the fast Fourier
transformation. This gives rather high absolute accuracy
(∼10−4) and allows one to study the deep sub-barrier fusion
processes. Amplitude of the time-dependent wave function

(r, R, t) is shown in Fig. 12 for the sub-barrier collision of
40Ca with 96Zr. Neutron transfer from 96Zr to the lower-lying
state in 40Ca splits the wave packet over the R variable (relative
motion of the nuclei). The part of the wave packet with the
neutron localized in 40Ca finds itself closer to the barrier (due
to a gain in kinetic energy) and overcomes the barrier with
higher probability.

FIG. 13. Barrier penetrability for collision of 40Ca with 96Zr
calculated in the three-body one-dimensional model. The dashed
curve shows the result obtained for “frozen” neutron (penetration
probability of one-dimensional barrier V12(R)).
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FIG. 14. Part of the nuclear reaction network usually used for the
calculations [43].

For a normalized initial condition the barrier penetration
probability at the moment t is equal to the total flux overcoming
the barrier at R = RB

T (t, E) =
∫ t

−∞
J (t ′)dt ′, J (t) = −

∫ ∞

−∞
jR(r, RB, t)dr,

jR = h̄

M
Im

{

∗ ∂

∂R



}
. (12)

The total penetration probability is defined as T (E) =
limT (t, E)|t→∞. The barrier penetration probability calculated
within the one-dimensional three-body model for the 48Ca +
96Zr fusion reaction is shown in Fig. 13.

Both factors, the lowering of the initially occupied valence
neutron level in 96Zr and the possibility for neutron transfer
into the unoccupied lower lying state in 40Ca, play significant
role and considerably enhance the sub-barrier fusion of 40Ca
with 96Zr. Note that for the 96Zr + 48Ca nuclear system
none of these factors applies: 1f 7

2 level in 48Ca is fully
occupied and this is the reason that the energy of the 2d 5

2
state in 96Zr does not decrease when these nuclei approach
each other. Thus we may definitely conclude that this is a
possibility for a “positive Q value” neutron transfer (existence
of unoccupied lower lying levels) that leads to the sub-barrier
fusion enhancement due to the two factors, namely, lowering
of the valence quasimolecular state in one nucleus (usually
more neutron rich) and neutron transfer from this state to the
lower (unoccupied) state of the other nucleus.

IV. ASTROPHYSICAL ASPECTS

The sub-barrier fusion enhancement for weakly bound
neutron rich nuclei can be used, in principle, for the synthesis of
new superheavy nuclei in future experiments with accelerated
fission fragments. The enhancement effect in deep sub-barrier

FIG. 15. Near barrier cross sections for the 6He + 12C (dashed
curve assumes sequential neutron transfer whereas solid curve takes
into account 2n transfer) and 4He+13C (dotted curve) fusion reactions.

fusion probability of light weakly bound nuclei may be even
more important for astrophysical processes. In the standard
scenario for the primordial nucleosynthesis (see Fig. 14) the
unstable weakly bound nuclei (such as 6,8He, 8,9,11Li and
so on) are intensively produced via (n, γ ) reactions with
subsequent β decay to the stable nuclei (see, e.g., Ref.
[43] and references therein). At the same time the fusion
reactions like 14C( 4He, γ ) 18O play very important role in the
nucleosynthesis network used for calculation of heavy-element
production [44].

From the analysis performed above we may predict that
the probability for fusion of light weakly bound neutron rich
nuclei with stable nuclei at deep sub-barrier energies should
be much higher (probably by several orders of magnitude)
as compared to fusion of ordinary nuclei. For example, an
estimated cross section for the 12C + 6He fusion reaction at
1 MeV center-of-mass energy (1n and 2n open channels),
shown in Fig. 15, exceeds by almost two orders of magnitude
the cross section for the nonresonance 13C( 4He, nγ ) 16O
reaction. This is due to neutron rearrangement which gives
extremely large gain in energy for the first reaction. The same
obviously holds for the corresponding astrophysical S factors.
Note that a similar mechanism of neutron rearrangement
may also significantly increases the fusion probability of
very light nuclei like 6He + 3He. If this prediction will be
confirmed experimentally, then the standard scenarios of the
primordial and, probably, supernova nucleosynthesis have to
be revised to a great extent. Fusion processes of light neutron
rich radioactive nuclei, formed with a large probability due
to intense neutron flux, may dominate here and have to
be included in the whole nucleosynthesis network (at the
same level as it is done for 3H, for example). For a final
conclusion one needs to know the corresponding S factors that
should be measured experimentally. Among other things, this
opens exciting future trends for low-energy studies of nuclear
reactions with radioactive beams.
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