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Abstract
A new approach is proposed for a unified description of strongly coupled deep
inelastic (DI) scattering, fusion, fission and quasi-fission (QF) processes of
heavy-ion collisions. The standard (most important) degrees of freedom of
the nuclear system, unified driving potential, and a unified set of dynamic
equations of motion are used in this approach. This makes it possible to
perform a full (continuous) time analysis of the evolution of heavy nuclear
systems, starting from the approaching stage, moving up to the formation of
the compound nucleus and eventually emerging into two final fission fragments.
The calculated mass, charge, energy and angular distributions of the reaction
products agree well with the corresponding experimental data. It gives us hope
to obtain rather accurate predictions for the probabilities of superheavy element
formation in near-barrier fusion reactions.

Communicated by Professor H Stöcker

1. Introduction

The interest in the synthesis of superheavy nuclei has grown lately due to new experimental
results [1] demonstrating the possibility of producing and investigating the nuclei in the region
of the so-called ‘island of stability’. It is the first (nearest) island of stability. There may be
more distant ones [2] The analysis of near-barrier nucleus–nucleus collisions shows that deep
inelastic (DI) scattering [3] and quasi-fission (QF) [4–6] are the main reaction channels here,
whereas the fusion probability (formation of compound nucleus (CN)) is extremely small. It
is the QF process that inhibits fusion by several orders of magnitude. At incident energies
around the Coulomb barrier in the entrance channel the fusion probability is about 10−2 for
mass asymmetric reactions induced by 48Ca and much less for more symmetric combinations
used in the ‘cold synthesis’ (figure 1).
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Figure 1. Schematic picture of the main reaction channels and two-dimensional experimental
TKE-mass plots [5] for 48Ca+248Cm and 86Kr+208Pb near-barrier collisions.

To estimate such a small quantity, first of all, one needs to be able to describe well
the main reaction channels, namely DI and QF. The quasi-fission processes are very often
indistinguishable from the DI scattering and from regular fission, which is the main decay
channel of excited heavy CN. Therefore one needs simultaneous description of all these
strongly coupled processes: DI scattering, QF, fusion and regular fission. Note that QF
phenomena are revealed in, and could be important also for comparatively light fusing systems
[6, 7].
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Nucleon exchange and mass transfer play an important role in these reactions, and the mass
asymmetry is one of the key degrees of freedom. We will succeed in deriving a set of coupled
transport equations for the distance between nuclear centres, dynamic surface deformations,
rotations of deformed nuclei, and the variable describing mass distribution between the two
fragments. The approaching stage and the scission of the nuclei are most difficult to describe,
because the mass transfer cannot be reduced here to a simple change of the mass asymmetry
variable. The semi-empirical approach [8] was used for describing the mass transfer at these
reaction stages. Starting from the master equation (natural for describing nucleon transfer)
we reduce it to the equivalent Langevin equation, which is included in a unified set of the
Langevin equations for all the principal degrees of freedom. Thus, for the first time, it becomes
possible to describe equally and simultaneously (continuously in time) the whole evolution of
low-energy nucleus–nucleus collision at strong channel coupling of DI scattering, QF, fusion
(CN formation) and regular fission.

Mass, charge, energy and angular distributions of the reaction products will be calculated
and compared with experimental data for 136Xe+209Bi at Ec.m. = 568 and 861 MeV [9, 10],
86Kr+166Er at Ec.m. = 464 MeV [11] and 48Ca+248Cm at Ec.m. = 203 MeV [5]. Detailed time
analysis of the reaction dynamics will also be performed in all cases.

2. Theoretical model

2.1. Potential energy surface

The proper choice of the unified degrees of freedom playing the most principal role both at
approaching stage and at the stage of fission (quasi-fission) is essential and rather difficult.
The number of the degrees of freedom should not be too large so that one is able to solve
numerically the corresponding set of dynamic equations. On the other hand, however, with
a restricted number of collective variables it is difficult to describe simultaneously the DI
collision of two separated nuclei and fission or QF of the highly deformed mono-nucleus. The
distance between the nuclear centres (corresponding to the elongation of a mono-nucleus),
dynamic surface deformations, mutual orientations of deformed nuclei and mass asymmetry
are probably the relevant degrees of freedom in fusion–fission dynamics. A schematic view
of the considered processes in the space of elongation (R), quadrupole deformation (β) and
mass asymmetry (α = (A1 − A2)/(A1 + A2)) is shown in figure 2.

The interaction potential of separated nuclei is calculated rather easily within the folding
procedure with effective nucleon–nucleon interaction or parametrized, e.g., by the proximity
potential [12]. Of course, some uncertainty remains here, but the height of the Coulomb
barrier obtained in these models coincides with the empirical Bass parametrization [13] within
2 to 3 MeV. Dynamic deformations of colliding spherical nuclei and mutual orientation of
statically deformed nuclei significantly affect their interaction changing the height of the
Coulomb barrier for more than 10 MeV (figure 3). It is caused mainly by a strong dependence
of the distance between nuclear surfaces on the deformations and the orientations of nuclei.
However, geometrical effects due to a change in the curvature of deformed nuclear surfaces
are also important here [14, 15] and should be taken into account in the calculation of the
nucleus–nucleus potential. An explicit formula for the geometrical factor for the interaction
of deformed and rotated nuclei along with its simple parametrization (free from the unphysical
singularity at zero curvature of flat surface) has been proposed in [15].

After contact, the mechanism of interaction of two colliding nuclei becomes more
complicated. For fast collisions the nucleus–nucleus potential, Vdiab, should reveal a strong
repulsion at short distances protecting the ‘frozen’ nuclei from penetrating each other and
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Figure 2. Evolution of nuclear system in the variables ‘elongation’ R, ‘deformation’ β and ‘mass
asymmetry’ α = (A1 − A2)/(A1 + A2).

Figure 3. (a) Potential energy of 48Ca+208Pb depending on distance and quadrupole dynamic
deformations of both nuclei. (b) Potential energy of 48Ca+238U depending on orientation of
statically deformed 238U nucleus (β

gs
2 = 0.22).

forming a nuclear matter with double density (diabatic conditions, sudden potential [16]). For
slow (near-barrier energies) collisions, when nucleons have enough time to reach equilibrium
distribution (adiabatic conditions), the nucleus–nucleus potential energy, Vadiab, is quite
different (figure 4). It is clear that for separated nuclei these potentials coincide.

The calculation of the multi-dimensional adiabatic potential energy surface for heavy
nuclear system is a very complicated physical problem, which is not yet fully solved. The two-
centre shell model [17] seems to be most appropriate to perform such calculations. However,
the simplest version of this model with restricted number of collective coordinates, using
overlapping oscillator potentials for the calculation of the single-particle states and resulting
shell correction, does not reproduce correct values of the nucleus–nucleus interaction for well-
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Figure 4. Potential energy for 48Ca+248Cm for diabatic (dashed curve) and adiabatic (solid curve)
conditions (ground-state deformations of the fragments).

Figure 5. Fusion–fission driving potential as a function of mass asymmetry calculated at two fixed
distances between nuclei (zero deformations): in the vicinity of the Coulomb barrier, R = 12 fm,
and for well-separated nuclei, R = 16 fm. Dotted, dashed and solid curves correspond to the
calculations within the LDM, two-centre shell model and empirical two-core model [18, 19],
respectively.

separated nuclei and nuclei at contact point (depending on mass asymmetry). The same holds
for the value of the Coulomb barrier and the height of the fission barrier at small deformations.
No doubt, within an extended version of this model all these shortcomings may be overcome.
We are currently working along this line.

Here we calculated the adiabatic potential energy of the nuclear system within the semi-
empirical two-core model of nucleon collectivization [18, 19] based on the two-centre shell
model idea [17]. In figure 5 the driving potentials calculated within the two-centre shell
model (version of [20]) and within the two-core model are compared for the nuclear system
formed in the collision of 48Ca+248Cm leading to a compound nucleus 296116. As can be
seen, the results of two calculations are rather close. At the same time, there are several
advantages of the proposed approach. To get a reasonable value for the fission barrier we
used the shell corrections at zero and ground state deformations calculated according to [21]
and the parametrization of the liquid drop energy proposed in [22]. Based on these values the
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Figure 6. Driving potential for the nuclear system formed in 48Ca+248Cm collision. The solid
lines show projections of DI (1), QF (2, 3) and CN formation (4) trajectories onto the plane where
the deformations of the fragments β = 0. Also shown is the projection of the regular fission path
onto the plane of zero mass asymmetry (α = 0). See the correspondence with figure 2 to imagine
the shapes.

adiabatic potential was calculated for small deformations. Then it was joined together with the
potential of two touching nuclei as it was proposed in [18, 19]. Experimental binding energies
of two cores were used, thus giving us the ‘true’ values of the shell corrections. As a result, the
two-core model gives automatically an explicit (experimental) value of the nucleus–nucleus
interaction energy in the asymptotic region for well-separated nuclei where it is known (the
Coulomb interaction plus nuclear masses). It also gives quite realistic heights of the Coulomb
barriers, which is very important for the description of near-barrier heavy-ion reactions. Note
that the proposed driving potential is defined in the whole region RCN < R < ∞; it is a
continuous function at R = Rcontact and, thus, may be used for a simultaneous description of
the whole fusion–fission process.

The resulting multi-dimensional adiabatic potential for 296116 nuclear system (formed in
the reaction 48Ca+248Cm) is shown in figures 6 and 7. The shell effects become apparent in
the deep valleys (‘cold valleys’), which are distinctly visible in the driving potential. They
correspond to the formation of doubly magic nuclei in the exit channel: 208Pb (at α ≈ 0.4) and
132Sn (at α ≈ 0.1). The two-core shell effects remain important also for strongly overlapping
nuclei leading to intermediate deep minima in the potential energy surface. These minima
correspond to the shape isomeric states having a two-cluster character with magic or semi-
magic cores [23].

The solid curves with arrows in figure 6 show the projections of the trajectories leading
to DI (1), QF (2,3) and fusion (4) reaction channels on the plane where the deformations of
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Figure 7. Three-dimensional view of the driving potential for 48Ca+248Cm at deformation β = 0.1.
Two white curves with arrows show possible QF paths (2 and 3 in figure 6).

the fragments are zero (β = 0). Also the projection of the regular fission path on the plane
α = 0 is shown. Real trajectories are located inside the cubic volume shown in figure 6 at
β �= 0 and α � 0.

For the nucleus–nucleus collisions at energies well above the Coulomb barrier (e.g.,
86Kr+166Er at Ec.m. = 464 MeV considered below) we used a simple relaxation scheme,
in which after contact a diabatic potential energy gradually turns into an adiabatic one:
V = Vdiab[1 − f (t)] + Vadiabf (t). Here t is the time of interaction and f (t) is a smoothing
function with parameter τrelax ∼ 10−21 s (see, e.g., [24]), f (t = 0) = 0, f (t � τrelax) = 1.
Our calculations show that even at above-barrier energies the evolution time of the heavy
nuclear system in the considered channels is much longer than τrelax (adiabatic conditions),
and the mass and energy distributions depend weekly on this parameter. At low-energy
collisions of heavy nuclei a diabatic reaction stage can be completely ignored and only an
adiabatic potential energy can be used. The reason is the large nuclear viscosity and strong
friction forces in the entrance channel, which damp very fast the relative motion kinetic
energy and lead the nuclear system to a subsequent slow evolution along the minima of the
multi-dimensional adiabatic potential energy surface (see below).

2.2. Equations of motion

A proper choice of dynamic equations for the considered degrees of freedom is also not
so evident. For the coordinates R, β various equations can be used, namely, classical
Newtonian, Langevin type [25, 26] or quantum Schrödinger coupled differential equations.
The corresponding inertia parameters µR and µβ can be calculated, for example, within the
Werner–Wheeler approach [27] or within the cranking model [28]. But the mass asymmetry
α is a discrete variable by its nature. Moreover, the corresponding inertia parameter µα being
calculated within the Werner–Wheeler approach becomes infinite at contact (scission) point
and for separated nuclei. Thus the nucleon transfer and a change of mass asymmetry require
a separate consideration.
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The master equation for the distribution function ϕ(A, t)

∂ϕ

∂t
=

∑
A′=A±1

λ(A′ → A)ϕ(A′, t) − λ(A → A′)ϕ(A, t) (1)

seems to be good for the description of nucleon transfer in DI scattering [29, 30]. Here A is
the number of nucleons in one of the fragments at time t and λ(A′ → A) is the macroscopic
transition probability. This equation was successfully used for the description of CN formation
in strong competition with the dominant QF channels in reactions leading to the synthesis of
superheavy nuclei [18, 19].

Equation (1) defines the evolution of the distribution function ϕ(A, t) ∼ ϕ(α, t) (not of
the variable α itself!), and it cannot be used directly in a common set of coupled differential
equations for the coordinates R and β. However, by certain rules [33, 34] this equation may
be transformed first to the Fokker–Planck equation ∂ϕ

∂t
= − ∂

∂A
(D(1)ϕ) + ∂2

∂A2 (D
(2)ϕ) and then

to the Langevin equation dA
dt

= D(1) +
√

D(2)�(t), or (using α = (2A − ACN)/ACN)

dα

dt
= 2

ACN
D

(1)
A (α) +

2

ACN

√
D

(2)
A (α)�(t), (2)

where �(t) is the normalized random variable with Gaussian distribution, 〈�(t)〉 =
0, 〈�(t)�(t ′)〉 = 2δ(t − t ′), and the transport coefficients D(1) and D(2) are defined as follows

D(1) =
∫

(A′ − A)λ(A → A′) dA′,

D(2) = 1

2

∫
(A′ − A)2λ(A → A′) dA′.

(3)

Note that equation (2) describes an inertialess change of the mass asymmetry α, i.e., there is no
kinetic energy connected with nucleon transfer. Formally, it is equivalent to the overdamped
regime of motion along the mass asymmetry coordinate.

Assuming that sequential nucleon transfers play a main role in mass rearrangement, i.e.
A′ = A ± 1, we have

D(1) = λ(A → A + 1) − λ(A → A − 1),

D(2) = 1
2λ(A → A + 1) + λ(A → A − 1).

(4)

For nuclei in contact the transition probability λ(A′ = A ± 1) is defined by nuclear level
density [29, 30] λ(±) = λ0

√
ρ(A ± 1)/ρ(A) ≈ λ0 exp

(
V (R,β,A±1)−V (R,β,A)

2T

)
. Here T =√

E∗/a is the local nuclear temperature, E∗ is the excitation energy, a is the level density
parameter, and λ0 is the nucleon transfer rate (∼1022 s−1 [29, 30]), which may, in principle,
depend on excitation energy (the same holds for the diffuseness coefficient D(2)). This feature,
however, is not completely clear. In [29] the mass diffusion coefficient was assumed to be
independent of excitation energy, whereas the microscopic consideration yields a square root
dependance of it on nuclear temperature [31]. A linear dependence of the mass diffusion
coefficient on T was also used [32]. Here we treat the nucleon transfer rate λ0 as a parameter
of the model. Later we hope to derive the temperature dependence of this parameter from a
systematic analysis of the available experimental data.

Nucleon transfer for slightly separated nuclei is also rather probable. This intermediate
nucleon exchange plays an important role in sub-barrier fusion processes [8] and has to be
taken into account in equation (2). It can be done by using the following expression for the
transition probability

λ(±) = λ0

√
ρ(A ± 1)

ρ(A)
Ptr(R, β,A → A ± 1). (5)
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Figure 8. Degrees of freedom used in the model.

Here Ptr(R, β,A → A ± 1) is the probability of one nucleon transfer depending on the
distance between the nuclear surfaces. This probability goes exponentially to zero at R → ∞
and it is equal to unity for overlapping nuclei. In our calculations, we used the semiclassical
approximation for Ptr proposed in [8]. Equation (2) along with (5) defines a continuous change
of mass asymmetry in the whole space. It is clear that dα

dt
→ 0 for far separated nuclei.

Finally, we have the following set of 13 coupled Langevin-type equations for seven
degrees of freedom {R,ϑ, β1, β2, ϕ1, ϕ2, α} ≡ x shown in figure 8:

dR

dt
= pR

µR

dϑ

dt
= h̄�

µRR2

dϕ1

dt
= h̄L1

�1

dϕ2

dt
= h̄L2

�2

dβ1

dt
= pβ1

µβ1

dβ2

dt
= pβ2

µβ2

dα

dt
= 2

ACN
D

(1)
A (α) +

2

ACN

√
D

(2)
A (α)�α(t)

dpR

dt
= −∂V

∂R
+

h̄2�2

µRR3
+

(
h̄2�2

2µ2
RR2

+
p2

R

2µ2
R

)
∂µR

∂R
+

p2
β1

2µ2
β1

∂µβ1

∂R
+

p2
β2

2µ2
β2

∂µβ2

∂R
(6)

− γR

pR

µR

+
√

γRT �R(t)

d�

dt
= −1

h̄

∂V

∂ϑ
− γtang

(
�

µRR
− L1

�1
a1 − L2

�2
a2

)
R +

R

h̄

√
γtangT �tang(t)

dL1

dt
= −1

h̄

∂V

∂ϕ1
+ γtang

(
�

µRR
− L1

�1
a1 − L2

�2
a2

)
a1 − a1

h̄

√
γtangT �tang(t)

dL2

dt
= −1

h̄

∂V

∂ϕ2
+ γtang

(
�

µRR
− L1

�1
a1 − L2

�2
a2

)
a2 − a2

h̄

√
γtangT �tang(t)
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dpβ1

dt
= − ∂V

∂β1
+

p2
β1

2µ2
β1

∂µβ1

∂β1
+

p2
β2

2µ2
β2

∂µβ2

∂β1
+

h̄2L2
1

2�2
1

∂�1

∂β1
+

(
h̄2�2

2µ2
RR2

+
p2

R

2µ2
R

)
∂µR

∂β1

− γβ1

pβ1

µβ1

+
√

γβ1T �β1(t)

dpβ2

dt
= − ∂V

∂β2
+

p2
β1

2µ2
β1

∂µβ1

∂β2
+

p2
β2

2µ2
β2

∂µβ2

∂β2
+

h̄2L2
2

2�2
2

∂�2

∂β2
+

(
h̄2�2

2µ2
RR2

+
p2

R

2µ2
R

)
∂µR

∂β2

− γβ2

pβ2

µβ2

+
√

γβ2T �β2(t).

Here ϕ1 and ϕ2 are the angles of rotation of the nuclei in the reaction plane (their moments
of inertia are �1,2(β1,2) = k 2

5M1,2R
0
1,2

2
(1 + β1,2/3), k ≈ 0.4), a1,2 = R/2 ± (R1 − R2)/2 are

the distances from the centres of the fragments up to the middle point between nuclear surfaces,
and R1,2 = R0

1,2[1 +
√

5/4πβ1,2P2(cos(ϕ1,2 −ϑ))] are the nuclear radii. γR, γtang and γβ1,2 are
the friction forces which depend generally on the coordinates x. For the moment, we ignore the
non-diagonal terms of the mass and friction parameters. The so-called ‘sliding friction’ (which
is proportional to the relative velocity of nearest nuclear surfaces vtang = h̄�

µRR
− h̄L1

�1
a1 − h̄L2

�2
a2)

is mainly responsible for the dissipation of the angular momentum (see, e.g., [13], p 265 and
[35]). In our model, the nucleus–nucleus potential energy depends on the distance between
nuclear surfaces ξ = R − Rcontact, where Rcontact = R1(α, β1, ϕ1 − ϑ) + R2(α, β2, ϕ2 − ϑ).
Therefore ∂V

∂ϕ1
+ ∂V

∂ϕ2
= − ∂V

∂ϑ
and, thus, the total angular momentum � + L1 + L2 is obviously

conserved. In asymmetric reactions even if the tangential velocity becomes zero the ‘rolling
friction’ remains due to the difference in angular velocities of two fragments. It changes
the angular momenta of the fragments still more up to the formation of the final ‘sticking’
configuration.

2.3. Friction forces and nuclear viscosity

A number of different mechanisms have been suggested in the literature for being responsible
for the energy loss in DI collisions. A discussion on the subject can be found, e.g., in
[13, 25, 26, 35]. The uncertainty in the strength of nuclear friction and in its form factor
is still large [36]. Because of that and for the sake of simplicity we use here for separated
nuclei the phenomenological nuclear friction forces with the Woods–Saxon radial form factor
F(ζ ) = (1 + eζ )−1, ζ = (ξ − ρF )/aF . The shift ρF ∼ 2 fm serves to approach the position of
the friction shape function to the strong absorption distance which is normally larger than the
contact distance Rcontact [37]. Thus γ F

R = γ 0
RF (ξ − ρF ), γ F

tang = γ 0
t F (ξ − ρF ) and γ 0

R, γ 0
t , ρF

and aF ∼ 0.6 fm are the model parameters.
For overlapping nuclei (mono-nucleus configuration) the two-body nuclear friction can be

calculated within the Werner–Wheeler approach [27]. The corresponding viscosity coefficient
µ0 is however rather uncertain. From the analysis of fission-fragment kinetic energies it has
been estimated to be of the order 1–2 × 10−23 MeV s fm−3 [27, 38]. The one-body dissipation
mechanism [39, 40] leads in general to stronger nuclear friction and some reduction coefficient
for it is often used in specific calculations. Taking into account this uncertainty we use
here the Werner–Wheeler approach [27] for calculating the form factors of nuclear friction
γ WW

R (R, β1, β2, α) and γ WW
β1,β2

(R, β1, β2, α) with the viscosity coefficient µ0 which is treated
as a model parameter. To keep the continuity of kinetic energy dissipation at the contact
point, where two colliding nuclei form a mono-nucleus, we switched the phenomenological
friction γ F

R to γ WW
R by the ‘smoothed’ (over 0.6 fm) step function θs(ξ) = (1 − e−ξ/0.3)−1.

The resulting radial friction γR = γ WW
R (R, β1, β2, α) + θs(ξ)γ F

R (ξ − ρF ) is shown in
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Figure 9. The radial nuclear friction for 48Ca+248Cm collision at zero deformations and fixed
mass asymmetry α = 0.675. Dotted, dashed and solid curves show the phenomenological friction
γ F

R in the entrance channel at γ 0
R = 40 × 10−22 MeV s fm−2, ρF = 2 fm and aF = 0.6 fm,

the two-body friction γ WW
R for mono-nucleus at µ0 = 3 × 10−23 MeV s fm−3, and the resulting

friction, respectively. The contact point is indicated by the arrow.

figure 9. There is no problem with the continuity at the contact point for the nuclear friction
γβ1,β2 associated with the surface deformations.

The two strength parameters of nuclear friction, γ 0
R for well-separated nuclei and µ0 for

nuclear viscosity of the deformable mono-nucleus, reflect, on one hand, a possible difference
in the mechanisms of dissipation of relative motion kinetic energy in DI collisions of two
separated nuclei and nuclear viscosity of a mono-nucleus due to the coupling of collective
motion (shape parameters) with the particle–hole excitations. On the other hand, these friction
strength parameters are of the same order of magnitude. Using µ0 = 0.2×10−22 MeV s fm−3

proposed in [38] we get the nuclear friction γR(β = 0) = 4πR0µ0 ≈ 15 MeV s fm−2

for a change in the elongation of a spherical nucleus with radius R0 = 6 fm. This value
can be compared with the value of nuclear friction of two nuclei in contact γR(ξ = 0) =
13 MeV s fm−2 estimated from the ‘proximity theorem’ [13, p 269]. Nevertheless, as
mentioned above, the uncertainty in the values of both parameters is very large [36]. Moreover,
microscopic analysis shows that nuclear viscosity may also depend strongly on nuclear
temperature [41].

2.4. Cross sections

The cross sections for all the processes were calculated in a natural way: a large number
of events (trajectories) were tested for a given impact parameter. Those events in which
the nuclear system overcame the fission barrier from the outside and entered the region
of small deformations and elongations (see figures 2 and 6), were treated as fusion (CN
formation). Subsequent decay of the excited CN was described then within the statistical
model with parameters proposed in [42]. The other events correspond to quasi-elastic, DI and
QF processes. The double differential cross sections of these processes were calculated as
follows:

d2σα

d� dE
(E, θ) =

∫ ∞

0
b db

�Nα(b,E, θ)

Ntot(b)

1

sin(θ)�θ�E
. (7)
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Here �Nα(b,E, θ) is the number of events at a given impact parameter b in which the system
enters into the channel α (definite mass asymmetry value) with kinetic energy in the region
(E,E + �E) and the centre-of-mass outgoing angle in the region (θ, θ + �θ); Ntot(b) is the
total number of simulated events for a given value of the impact parameter.

Expression (7) describes the mass and energy distributions of the primary fragments
formed in the reaction. Subsequent de-excitation of these fragments via fission or emission
of light particles and gamma rays was taken into account within the statistical model leading
to the final mass and energy distributions of the reaction fragments. The sharing of the
excitation energy between the primary fragments was assumed to be proportional to their
masses. Neutron emission during a long evolution of the system going into the QF channels
or CN formation was also taken into account. However, it was found that pre-scission and
pre-compound neutron evaporation does not influence significantly the gross properties of DI
and QF processes (see below).

In our first calculations, we restricted ourselves to the consideration of only one quadrupole
dynamic deformation variable β instead of independent deformations β1 and β2 of two
fragments. We assumed ‘equality of forces’, i.e., C1β1 = C2β2, where C1,2 are the LDM
stiffness parameters of the fragments [43]. Using this ratio and β1 +β2 = 2β the deformations
of the fragments were derived from the common variable β. Removing these simplifications
could be rather important. We also ignored the ground state deformations of colliding nuclei.
In this case, the potential energy does not depend on the orientation of the nuclei and the
nuclear system possesses an axial symmetry, which significantly simplifies the calculation of
the adiabatic potential energy surface. The orientation effects in the formation of CN and
quasi-fission channels will be considered in our forthcoming publication.

3. DI, QF and FF processes

At first we analysed the collision of very heavy nuclei, 136Xe+209Bi at energies Ec.m. =
568 MeV and 861 MeV [9, 10], where the DI process should dominate due to expected
prevalence of the Coulomb repulsion over nuclear attraction and the impossibility of CN
formation. In that case, the reaction mechanism depends mainly on the nucleus–nucleus
potential at a contact distance (which determines the grazing angle), on the friction forces at
this region (which determine the energy loss) and on the nucleon transfer rate at contact.

For the nucleus–nucleus interaction we used the proximity potential [12] with
r0 = 1.16 fm. For separated nuclei we chose the friction forces with γ 0

R = 40 × 10−22

MeV s fm−2, ρF = 2 fm and aF = 0.6 fm and equal tangential and radial friction strengths
γ 0

t = γ 0
R as it was recommended in [44]. In spite of a short penetration of nuclei into each other,

the reaction cross sections were found to be sensitive to the value of nuclear viscosity of the
mono-nucleus, µ0, mainly due to the large dynamic deformations of the reaction fragments.
The values of µ0 = 1 × 10−22 and 3 × 10−22 MeV s fm−3 have been used to describe
properly the reaction cross sections at the centre-of-mass beam energies of 568 and 861 MeV
respectively. These values are larger than those found for low excited fissile nuclei [38]. It
evidently indicates a temperature dependence of nuclear viscosity. The nucleon transfer rate
was fixed at λ0 = 0.1 × 1022 s−1. This rather small value was found to be sufficient to
reproduce the mass distributions of reaction products at both energies.

In figure 10 the angular, energy and charge distributions of the Xe-like fragments are shown
comparing with our calculations (histograms). In accordance with experimental conditions at
the incident energy Ec.m. = 861 MeV only the events with the energy loss higher than 50 MeV
and with the scattering angles in the region of 18◦ � θc.m. � 128◦ were accumulated.
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(a)

(c)

(b)

Figure 10. Angular (a), energy (b) and charge (c) distributions of the Xe-like fragments obtained
in the 136Xe+209Bi reaction at Ec.m. = 861 MeV. Experimental data are from [10]. Histograms are
the theoretical predictions. The energy distribution is also shown in (b) for Ec.m. = 568 MeV [9]
(full circles and thin histograms). The arrows in (b) indicate the corresponding beam energies.

The minimal values of kinetic energy of the reaction fragments (∼300 MeV) are almost
independent of the beam energies. This indicates that these events correspond to the same
re-separation distance and resemble the fission process, though the CN is not formed here.
Some underestimation of the low-Z shoulder in figure 10(c) could be due to the contribution of
sequential fission of highly excited reaction fragments not accounted for in the present model.

At the second step, we analysed the reaction 86Kr+166Er at Ec.m. = 464 MeV [11], in
which the nuclear attractive forces may lead, in principle, to the formation of a mono-nucleus
and of a CN. The adiabatic potential energy surface, QF and fusion–fission (FF) processes
should in this case play a more important role. For the analysis of this reaction, we used
the same value of the nucleon transfer rate and the same friction forces as in the previous
case. For the nuclear viscosity, we choose the value µ0 = 2 × 10−22 MeV s fm−3 because of
intermediate values of excitation energies available here as compared with the two previous
reactions.

The interaction time is one of the most important characteristics of nuclear reactions,
though it cannot be measured directly. It depends strongly on the reaction channel. The
time distribution of all the 86Kr+166Er collisions at Ec.m. = 464 MeV, in which the kinetic
energy loss is higher than 35 MeV, is shown in figure 11. The interaction time was calculated
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Figure 11. Time distribution of all the simulated events for 86Kr+166Er collisions at Ec.m. =
464 MeV, in which the energy loss was found higher than 35 MeV (total 105 events). Conditionally,
fast (<2 × 10−21 s), intermediate and slow (>2 × 10−20 s) collisions are marked by different
shades (white, light grey and dark grey, respectively). The black area corresponds to CN formation
(estimated cross section is 120 mb), and the arrow shows the interaction time after which the
neutron evaporation may occur.

starting from t = 0 at R = Rmax = 40 fm up to the moment of scission into two fragments
(R > Rscission, pR > 0) or up to CN formation. The approaching time (path from Rmax

to Rcontact) in the entrance channel is very short (4–5 × 10−22 s depending on the impact
parameter) and may be ignored here. All the events are divided relatively into three groups:
fast (τint < 20 × 10−22 s), intermediate and slow (τint > 200 × 10−22 s).

A two-dimensional plot of the energy–mass distribution of the primary fragments formed
in the 86Kr+166Er reaction at Ec.m. = 464 MeV is shown in figure 12. Inclusive angular,
charge and energy distributions of these fragments (with energy losses more than 35 MeV)
are shown in figure 13. Rather good agreement with experimental data of all the calculated
DI reaction properties can be seen, which was never obtained before in dynamic calculations.
Underestimation of the yield of low-Z fragments (figure 13(c)) could again be due to the
contribution of sequential fission of highly excited reaction participants not accounted in the
model at the moment.

In most of the damped collisions (Eloss > 35 MeV) the interaction time is rather short
(several units of 10−21 s). These fast events correspond to grazing collisions with intermediate
impact parameters. They are shown by the white areas in figures 11 and 13(b) and by the
open circles in the two-dimensional TKE-mass plot (figure 12(b)). Note that a large amount of
kinetic energy is dissipated here very fast at relatively low mass transfer (more than 200 MeV
during several units of 10−21 s).

The other events correspond to much slower collisions with large overlap of nuclear
surfaces and significant mass rearrangement. In the TKE-mass plot these events spread over
a wide region of mass fragments (including symmetric splitting) with kinetic energies very
close to the kinetic energy of fission fragments. The solid line in figure 12(b) corresponds to
the potential energy at scission point V (r = Rscission, β, α) + Qgg(α) minimized over β. The
scission point is calculated here as Rscission(α, β) = (1.4/r0)[R1(A1, β1)+R2(A2, β2)] + 1 fm,
Qgg(α) = B(A1) + B(A2) − B(86Kr) − B(166Er) and B(A) is the binding energy of a nucleus
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Figure 12. (a) TKE-charge distribution of the 86Kr+166Er reaction products at Ec.m. = 464 MeV
[11]. (b) Calculated TKE-mass distribution of the primary fragments. Open, grey and black circles
correspond to the fast (<2 × 10−21 s), intermediate and long (>2 × 10−20 s) events (overlapping
each other on the plot).

A. Some gap between the two groups in the time and energy distributions can also be seen
in figures 11 and 13(b). All these make the second group of slow events quite distinguished
from the first one. These events are more similar to fission than to deep inelastic processes.
Formally, they can also be marked as quasi-fission.

For the highly excited nuclear system, neutron evaporation is possible before re-separation
of the fragments and also on the path to the formation of a CN. In figure 11 the arrow indicates
the interaction time after which the probability of neutron emission becomes noticeable in the
system 86Kr+166Er at excitation energy of 200 MeV (reached at this moment of interaction
time). However, the calculations show that only a few neutrons (less than 2 on average)
may evaporate at this intermediate reaction stage and this does not influence significantly the
angular, energy and mass distributions of the reaction products. Neutron evaporation from
the excited primary fragments dominates in this reaction [45] changing the mass and energy
distributions of detected particles.

Let us consider now the near-barrier fusion reaction leading to the formation of a
superheavy nucleus in which the QF process plays a dominant role. The competition between
CN formation and QF processes in these reactions was already analysed using the master
equations (with restricted number of variables) [18, 19] and within the Langevin equations,
in which the mass asymmetry coordinate α was treated on the same base as elongation and
deformation [46]. In both cases, the calculations started from the contact configuration thereby
ignoring the approaching stage and the DI channels. Here we perform a complete analysis of
such a reaction.

A typical trajectory of the nuclear system in the collision of 48Ca+248Cm at Ec.m. =
203 MeV (zero impact parameter) is shown in figures 14 and 15. This trajectory leads the
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(a)

(c)

(b)

Figure 13. Angular (a), energy (b) and charge (c) distributions of the 86Kr+166Er reaction products
at Ec.m. = 464 MeV. Experimental data (points) are from [11]. Overlapping white, light and dark
grey areas in (b) show the contributions of the fast, intermediate and slow events, respectively (see
figures 11 and 12(b)).

Figure 14. One of the trajectories leading to the QF exit channel in the collision of 48Ca+248Cm
at Ec.m. = 203 MeV. It is drawn in the three-dimensional space of ‘elongation–deformation–mass
asymmetry’ (to the left) and projected onto the plane of deformation β = 0.25 (to the right).
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Figure 15. Change of elongation, deformation, mass asymmetry, potential, kinetic and excitation
energies along the trajectory shown in figure 14.

system to the QF channel. After overcoming the Coulomb barrier the fragments become first
very deformed, then the mass asymmetry gradually decreases and the system finds itself in the
quasi-fission valley with one of the fragments close to the doubly magic nucleus 208Pb. After
contact, the nuclear system has almost zero kinetic energy up to scission, and the regions with
higher potential energy are surmounted mainly due to the fluctuations. The excitation energy
of the system (temperature) gradually increases (very sharply on descent stage to the scission
point).

Figure 16 shows the calculated correlation of the total kinetic energy and the mass
distributions of the reaction products along with inclusive mass distribution for the 48Ca+248Cm
reaction at near-barrier energy of Ec.m. = 203 MeV. Good agreement with experimental data
(compare with figure 1(a)) is rather evident. The tails of DI component to the unphysical high
energies (higher than Ec.m. at A1 ∼ 50 and A2 ∼ 250) and to very low energies with more
symmetric mass combinations in figure 1(a) (absent in the theoretical calculations) are the
results of specific experimental procedure [47].

The probability for CN formation in this reaction was found to be very small and depended
greatly on the incident energy. As was already mentioned, due to the strong dissipation of
kinetic energy only the fluctuations (random forces) define the dynamics of the system after
the contact of two nuclei. At near-barrier collisions the excitation energy (temperature) of
the system is rather low, the fluctuations are weak and the system chooses the most probable
path to the exit channel along the quasi-fission valley. However, at non-zero excitation energy
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(a)

(b)

Figure 16. (a) Calculated TKE-mass distribution of primary reaction products in the collision of
48Ca+248Cm at Ec.m. = 203 MeV. (b) Contributions of DI (1), QF (2,3) and fusion–fission (4)
processes to inclusive mass distribution (see the corresponding trajectories in figure 6).

there is a chance for the nuclear system to overcome the multi-dimensional inner potential
barriers and find itself in the region of CN configuration (small deformation and elongation).
Within the Langevin calculations, a great number of events should be tested to find this low
probability. For the studied reaction, for example, only several fusion events have been found
among more than 105 total tested events (see figure 16(b)). The cross section of CN formation
at the beam energy of Ec.m. = 203 MeV was estimated to be only 0.02 mb in reasonable
agreement with those found previously [19] and with the yield of evaporation residues in
this reaction [1]. Detailed analysis of CN formation in ‘cold’ (more symmetric) and ‘hot’
(asymmetric) fusion reactions leading to the formation of superheavy elements will be done
separately.

4. Conclusion

For near-barrier collisions of heavy ions, it is very important to perform a combined (unified)
analysis of all strongly coupled channels: deep inelastic scattering, quasi-fission, fusion and
regular fission. We demonstrate in this paper, for the first time, that this ambitious goal has
now become possible. A unified potential energy surface is derived determining the evolution
of the nuclear system in all the channels. This potential has also appropriate values of the
Coulomb barriers in the entrance channel and proper values of the fission barriers in the exit
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one. A unified set of dynamic Langevin-type equations is proposed for the simultaneous
description of DI and fusion–fission processes. For the first time, the whole evolution of
the heavy nuclear system can be traced starting from the approaching stage and ending in
DI, QF and/or fusion–fission channels. Satisfactory agreement of these first calculations
with experimental data gives us hope not only to obtain rather accurate predictions of the
probabilities for superheavy element formation but also to clarify much better than before the
mechanisms of quasi-fission and fusion–fission processes. Also the determination of such
fundamental characteristics of nuclear dynamics as the nuclear viscosity and the nucleon
transfer rate is now possible. New and more experiments on near-barrier collisions of heavy
nuclei with accurate and simultaneous detection of all significant reaction channels are needed.
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