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Abstract—The problem of a quantum-mechanical description of a near-barrier fusion of heavy nuclei
that occurs under the conditions of a strong coupling of their relative motion to the rotation of deformed
nuclei and to a dynamical deformation of their surfaces is studied. A new efficient method is proposed
for numerically solving coupled Schrödinger equations with boundary conditions corresponding to a total
absorption of the flux that has overcome a multidimensional Coulomb barrier. The new method involves no
limitations on the number of channels that are taken into account and makes it possible to calculate cross
sections for the fusion of very heavy nuclei that are used in the synthesis of superheavy elements. A global
analysis of the relief of the multidimensional potential surface and of the multichannel wave function in the
vicinity of the Coulomb barrier provides a clear interpretation of the dynamics of near-barrier nuclear fusion.
A comparison with experimental data and with the results produced by the semiempirical model for taking
into account the coupling of channels is performed. c© 2004 MAIK “Nauka/Interperiodica”.

INTRODUCTION

The near-barrier fusion of nuclei still attracts the
attention of theorists and experimentalists. The dy-
namics of low-energy fusion is governed by quantum
tunneling through a Coulomb barrier, this occurring
under conditions where relative motion is strongly
coupled to internal degrees of freedom—primarily,
to vibrations of nuclear surfaces, the rotation of de-
formed nuclei, and nucleon transfer [1]. We note that
this theoretical problem arises in many realms of
physics and chemistry. A considerable improvement
of experimental techniques that has been achieved
over the past few years in this field provides the pos-
sibility of performing precision measurements en-
abling one to study the details of the subbarrier-fusion
process and subtle effects accompanying it (see, for
example, [2, 3] and the review article of Dasgupta
et al. [4]). It is hardly possible to solve the respective
quantum-mechanical problem (or its semiclassical
analog) exactly. As a result, we still do not have an
unambiguous interpretation of experimental data in
some cases, despite a rather good understanding of
the physics of the process in general. The situation
is even worse in predicting subbarrier-fusion cross
sections for as-yet-unexplored combinations of heavy
nuclei, but such predictions are of paramount impor-
tance for planning and performing expensive experi-
ments on the synthesis of superheavy elements.

A few algorithms for numerically solving the set
of coupled Schrödinger equations that simulates the
coupling of channels in the near-barrier fusion of
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heavy nuclei have been proposed in recent years.
These algorithms rely either on employing some ap-
proximate method to diagonalize the coupling matrix
at the barrier [5] or on directly constructing a numer-
ical solution to the relevant differential equations [6].
As was shown in [7], colliding heavy nuclei develop
rather large dynamical deformations upon the inclu-
sion of realistic forces of nucleus–nucleus interac-
tions, and it is necessary to take into account a large
number of excited phonons in order to describe these
deformations. Following basically the same line of
reasoning as in [6], we developed a new algorithm for
solving a set of second-order differential equations.
This algorithm makes its possible to avoid imposing
any limitations on the number of channels that are
taken into account. The second distinctive feature of
our approach is that we consider boundary conditions
on the incident flux more accurately; that is, we en-
sure a complete absence of waves reflected from the
region behind the barrier. In addition to the barrier
penetrability, this makes it possible to calculate the
multidimensional wave function itself in the near-
barrier region. This function can be used to obtain, via
a detailed analysis, deeper insight into the dynamics
of multidimensional tunneling. In just the same way
as in [6], we do not resort to the linear approximation
in the coupling interaction, but, in contrast to [6], we
use an explicit (quadrature) method for calculating
the matrix elements of the interaction, this method
ensuring a preset accuracy independent of the num-
ber of channels that are taken into account. This
approach is used to analyze the fusion of statically
deformed and spherically deformed heavy nuclei. We
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compare our results with experimental data and with
the results obtained on the basis of the semiempirical
model developed for taking into account the coupling
of channels in fusion processes.

1. INTERACTION OF DEFORMED NUCLEI
The shape of an axisymmetric deformed nucleus

can be described by the formula

R(β, θ) = R̃


1 +

∑
λ≥2

βλ

√
2λ + 1

4π
Pλ(cos θ)


 ,

(1)

where β ≡ {βλ} are the dimensionless deformation
parameters of multipolarity λ = 2, 3, ...; Pλ are Leg-
endre polynomials;

R̃ = R0

[
1 +

3
4π

∑
λ

β2
λ (2)

+
1
4π

∑
λ,λ′,λ′′

√
(2λ′ + 1)(2λ′′ + 1)

4π(2λ + 1)

×(λ′0λ′′0|λ0)2βλβ′
λβ′′

λ

]−1/3

;

R0 is the radius of an equivalent sphere that has the
same volume as the deformed nucleus being con-
sidered; and (λ′0λ′′0|λ0) are Clebsch–Gordan coef-
ficients. The potential energy of the interaction of two
deformed nuclei can be written as the sum of the
Coulomb and nuclear energies and the deformation
energy in the harmonic approximation; that is,

V12(r;β1, θ1,β2, θ2) = VC(r;β1, θ1,β2, θ2) (3)

+ VN (r;β1, θ1,β2, θ2) +
1
2

2∑
i=1

∑
λ

Ciλ(βiλ − β
g.s.
iλ )2.

Here and below, the index i = 1, 2 numbers inter-
acting nuclei; Ciλ are the stiffness parameters of the
nuclear surface; θ1,2 specify the orientations of the
symmetry axes of deformed nuclei (see Fig. 1); and
β

g.s.
iλ are the static deformations of the nuclei.

Disregarding multipole–multipole interactions
and retaining terms to second order in the defor-
mations inclusive, we can represent the Coulomb
interaction of deformed nuclei in the form

VC = Z1Z2e
2 (4)

×


F (0)(r) +

2∑
i=1

∑
λ≥2

F
(1)
iλ (r)βiλYλ0(θi)




+ Z1Z2e
2

2∑
i=1

∑
λ′

∑
λ′′

λ′+λ′′∑
λ=|λ′−λ′′|
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Fig. 1. Relative disposition of two deformed nuclei rotat-
ing in the reaction plane (βi = {βiλ}).

×
min{λ′,λ′′}∑

µ=−min{λ′,λ′′}

∫
Y ∗

λ′µY ∗
λ′′−µYλ0dΩ

× βiλ′βiλ′′Yλ0(θi) + . . . ,

where F
(n)
λ (r) are the interaction form factors. For

r > R1 + R2, we have

F (0) =
1
r
, F

(1)
iλ =

3
2λ + 1

Rλ
i

rλ+1
,

F
(2)
iλ=2 =

6
5

R2
i

r3
, F

(2)
iλ=4 =

R4
i

r5
.

At smaller values of r, in which case the nuclear sur-
faces are overlap, the form factors F

(n)
λ (r) are given by

more complicated expressions [8], but this is insignif-
icant for fusion processes, because, here, the position
of the Coulomb barrier satisfies the condition RB

C >
R1 + R2. In describing the rotation of deformed nu-
clei, one usually takes into account their quadrupole
and (or) hexadecapole deformations. Since the strong
inequality β4 � 1 holds as a rule, only λ′ = λ′′ = 2
terms are retained in the third term, the values of 2
and 4 being taken for λ.

Short-range nuclear interaction depends on the
distance between the nuclear surfaces, which is
usually set to the distance along the axis con-
necting the centers of the nuclei involved, ξ = r −
R1(β1, θ1) − R2(β2, θ2), or to the minimum distance
between their surfaces (see Fig. 1). This interac-
tion is often approximated by the Woods–Saxon
potential VWS(ξ) = V0[1 + exp(ζ/aV )]−1, where ζ =
r −RV −∆R1 −∆R2, ∆R1 = R1(β1, θ1)−R1, and
∆R2 = R2(β2, θ2) − R2. It should be recalled that,
for the Woods–Saxon potential, the interaction range

RV = rV
0 (A1/3

1 + A
1/3
2 ) usually does not coincide

with the sum of the radii of the nuclei themselves,
so that rV

0 is an additional independent parameter.
As an alternative possibility, one can describe nuclear
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interaction in terms of the “proximity” potential [9]

Vprox(ξ) = 4πγbP−1
sphΦ(ξ/b), (5)

where Φ(ξ/b) is a universal dimensionless form
factor; b is a parameter that characterizes the surface-
layer thickness (about 1 fm); γ = γ0(1 − 1.7826I2),
with γ0 = 0.95 MeV fm−2 being the surface-tension
coefficient and I being given by I = (N − Z)/A;
ξ = r − R1(β1, θ1) − R2(β2, θ2); and Psph = 1/R̄1 +
1/R̄2 with R̄i = Ri[1 − (b/Ri)2]. This interaction
is the most sensitive to the choice of matter radii
for nuclei. The most realistic results are obtained if
use is made of r0 ≈ 1.16 fm for the radii of heavy
nuclei (A > 40) and of r0 ≈ 1.22 fm for the radii of
A ∼ 16 nuclei. The most important advantage of the
proximity potential is that it is universal in the sense
that this potential features no adjustable parameters
like V0, rV

0 , or aV .

The attraction of two nuclear surfaces also de-
pends on their curvature [9, 10]—that is, on the area
of touching surfaces. Usually, this is taken into ac-
count by replacing the quantity Psph in (5) by the
expression

P (β1, θ1,β2, θ2) =
[
(k||

1 + k
||
2 )(k⊥

1 + k⊥
2 )

]1/2
, (6)

where k
||,⊥
i are the principal parameters of the lo-

cal curvature of the surfaces of interacting nuclei

(see, for example, [11]). For spherical nuclei, k
||,⊥
i =

R−1
i and P = Psph. In the case of dynamical deforma-

tions along the axis connecting the centers of the two
nuclei (θ1 = θ2 = 0)—it is realized in slow collisions
of dynamically deformable nuclei—the local curvature
can be found explicitly (see Appendix 1), which yields

P (β1, θ1 = 0,β2, θ2 = 0) (7)

=
∑
i=1,2

1
R̃i


1 +

∑
λ≥2

√
2λ + 1

4π
βiλ




−2

×


1 +

∑
λ≥2

(1 + η(λ))

√
2λ + 1

4π
βiλ


 ,

where η(λ) = 3 · 4 · · · (λ + 1)/(λ − 1)!. For rotating
deformed nuclei, it is necessary, in principle, to take
into account the difference of the shortest distance
ξS between the surfaces and the distance ξ calcu-
lated along the central line (see Fig. 1). For realistic
deformations, however, the resulting effect of taking
into account the inequality of ξS and ξ in calculating
the interaction potentials and fusion cross sections is
quite small in relation to the effect of the change in the
curvature (P �= Psph ) [12].

Formally, expression (6) can vanish at some neg-
ative values of the deformation (the touching of two
planar surfaces). This unphysical effect arises be-
cause of the disregard of finite dimensions of the areas
of touching nuclear surfaces and indicates that it is
necessary to go over to a more precise approximation
at large negative deformations. The main contribu-
tion to the nucleus–nucleus potential comes from
the interactions of the most closely spaced nucleons,
whose number, albeit depending on the local curva-
ture of the surfaces, is always finite. Thus, we see
that, instead of merely substituting the quantity P for
Psph in (5), it would be more correct, for the short-
range nucleus–nucleus interaction, to employ the ex-
pression VN = G(β1, θ1,β2, θ2)V 0

N (r;β1, θ1,β2, θ2),
where V 0

N (r;β1,θ1,β2, θ2) is the interaction that was
calculated with allowance for the deformations of the
nuclei and their relative orientation but without tak-
ing into account the change in the curvature of the
surfaces, while G(β1, θ1,β2, θ2) is a geometric factor
that takes into account the change in the number of
interacting nucleons that occur in the closely spaced
layers of the two nuclei in relation to the case of spher-
ical surfaces. In Appendix 2, we present a derivation
of an approximate expression for the geometric factor
G(β1, θ1,β2, θ2), which plays a significant role at not
very small deformations.

The nuclear-surface-deformation stiffness Cλ can
be found from the experimental value of the proba-
bility B(Eλ) of an electromagnetic transition involv-
ing the excitation of one vibrational quantum [13].
Specifically, we have

Cλ = (2λ + 1)
ελ

2〈β0
λ〉2

, (8)

where ελ = �ωλ is the energy of a vibrational quan-
tum and

〈β0
λ〉 =

4π
3ZRλ

0

[
B(Eλ)

e2

]1/2

is the root-mean-square value of the total deforma-
tion for zero-point vibrations. If there are no rele-
vant experimental data, the parameters of nuclear-
surface vibrations can be determined on the basis of
the liquid-drop model [13]; that is,

CLD
λ = γ0R

2
0(λ − 1)(λ + 2) − 3

2π
Ze2

R0

(λ − 1)
(2λ + 1)

,

(9a)

DLD
λ =

3
4π

AmNR2
0

λ
, ελ = �

√
CLD

λ

DLD
λ

, (9b)

where DLD
λ is the mass parameter, A is the number

of nucleons in the nucleus being considered, and mN
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is the nucleon mass. We note that, in many cases
(especially for magic nuclei), the liquid-drop model
yields, for the parameters of surface vibrations, val-
ues that differ from their experimental counterparts
considerably. For the ensuing calculations (we also
bear in mind the possibility of parallel calculations
employing the equations of classical mechanics), it
is convenient to go over to the absolute values of
the nuclear deformation, sλ =

√
(2λ + 1)/4πR0βλ.

In this case, the potential energy of a specific vibration
can be represented in the form cλs2

λ/2, where

cλ = Cλ

(
2λ + 1

4π
R2

0

)−1

=
�ωλ

2〈s0
λ〉2

and

〈s0
λ〉 =

R0√
4π

〈β0
λ〉,

while the mass parameter is determined from the rela-
tion ωλ =

√
cλ/dλ; within the liquid-drop model, we

have

dLD
λ = DLD

λ

(
2λ + 1

4π
R2

0

)−1

=
3

λ(2λ + 1)
AmN .

The two-dimensional interaction potential (3) for
the spherical nucleus 16O and the deformed nucleus
154Sm (βg.s.

2 = 0.3, β
g.s.
4 = 0.1) is displayed in Fig. 2a

versus the relative orientation of these two nuclei. The
potential of interaction of two spherical nuclei 40Ca
and 90Zr versus their dynamical quadrupole deforma-
tion is shown in Fig. 2b according to the calculations
with the parameters of the liquid-drop model (for the
sake of simplicity, it was assumed here that the de-
formation energy of the nuclei is proportional to their
masses; thus, only one parameter β = β1 + β2 was
used instead of two dynamical-deformation parame-
ters β1 and β2). In order to simulate the nuclear part of
the interaction, we used the Woods–Saxon potential
with parameters V0 = −105 MeV, rV

0 = 1.12 fm, and
aV = 0.75 fm in the first case and the proximity po-
tential with parameter ri

0 = 1.16 for the nuclear radii
in the second case. The figures clearly demonstrate
the multidimensional character of the potential of the
nucleus–nucleus interaction and of the potential bar-
rier itself, which, as is readily seen, cannot be charac-
terized by its height B alone; it would be more correct
to consider some continuous distribution F (B) of
barriers (see below).

2. SET OF COUPLED EQUATIONS
AND BOUNDARY CONDITIONS

For two deformed nuclei rotating in the reaction
plane, the Hamiltonian can be represented in the form

H = −�
2∇2

r

2µ
+ VC(r;β1, θ1,β2, θ2) (10)
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Fig. 2. (a) Interaction potential for the 16O and 154Sm
(βg.s.

2 = 0.3, βg.s.
4 = 0.1) nuclei versus the distance and

relative orientation. (b) Potential energy of the interaction
of the spherical nuclei 40Ca and 90Zr versus the distance
and their dynamical quadrupole deformation.

+ VN (r;β1, θ1,β2, θ2) +
∑
i=1,2

�
2Î2

i

2�i

+
∑
i=1,2

∑
λ≥2

(
− �

2

2diλ

∂2

∂s2
iλ

+
1
2
ciλs2

iλ

)
,

where µ is the reduced mass of these two nuclei
and Îi and �i are, respectively, the operator of the
angular momentum and the moment of inertia of the
ith nucleus. In the algorithm developed for solving the
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quantum set of coupled equations, we assumed the
independence of vibrations having different multipole
orders (not greater than two in each nucleus) and
also disregarded the coupling of rotations and vibra-
tions, considering them separately. It turned out that
the algorithm used here enabled one to solve, within
a reasonable time, a rather large number of cou-
pled equations (about 300 for each partial wave with
a computer having 128 Mbytes of random-access
memory), this providing the possibility of dispensing,
in the following, with approximations where different
excitations are considered to be independent. The
maximum number of channels whose coupling can
be taken into account in the code used is estimated
by the formula Nν ∼ 500

√
M/Nr, where Nr is the

number of nodes of the mesh in the radial direction
(r) and M is the computer random-access mem-
ory in megabytes. In solving the quantum problem
in question, we employ the so-called isocentrifugal
approximation [14], which consists in disregarding
the intrinsic spins of nuclei against the orbital angu-
lar momentum of relative motion, this orbital angu-
lar momentum being assumed to be identical in all
channels (conserved quantum number). This approx-
imation makes it possible to reduce severalfold the
dimensionality of the set of differential equations that
is to be solved.

Expanding, in terms of partial waves, the total
wave function for the system being considered as

Ψk(r, ϑ,α) =
1
kr

∞∑
l=0

ileiσl(2l + 1)χl(r,α)Pl(cos ϑ)

(11)

and substituting this expansion into the Schrödinger
equation, we arrive at the following set of coupled
equations:

∂2

∂r2
χl(r,α) −

{
l(l + 1)

r2
+

2µ
�2

(12)

×
[
E − V (r,α) − Ĥint(α)

]}
χl(r,α) = 0.

Here, α stands for intrinsic variables (deformation
parameters or rotation angles), Ĥint(α) is the Hamil-
tonian corresponding to these variables, E is the
energy of colliding nuclei in the c.m. frame, and
V (r,α) = VC(r,α) + VN (r,α). At all values of r,
with the exception of those in the region where
the nuclei involved are in contact (see below), the
function χl(r,α) is expanded in the total set of
eigenfunctions of the Hamiltonian Ĥint(α),

χl(r,α) =
∑

ν

yl,ν(r)ϕν(α), (13)

while the radial channel wave functions yl,ν(r) satisfy
a set of second-order ordinary differential equations
that, in the following, is solved numerically,

y′′l,ν −
{

l(l + 1)
r2

+
2µ
�2

[Eν − Vνν(r)]
}

yl,ν (14)

−
∑
µ�=ν

2µ
�2

Vνµ(r)yl,µ = 0.

Here, Eν = E − εν , where εν is the excitation of the
nuclei in the channel ν, and Vνµ(r) = 〈ϕν |V (r,α)|ϕµ〉
is the channel-coupling matrix.

In a low-energy collision of not very heavy nuclei,
nuclei that have overcome the Coulomb barrier un-
dergo fusion (that is, form a compound nucleus) with
a probability close to unity as soon as their surfaces
come into contact. In this case, the fusion cross sec-
tion can be measured by examining the total yield of
evaporated residues and fragments originating from
compound-nucleus fission. In formulating boundary
conditions for Eqs. (14), it is therefore usually as-
sumed that the flux in the region behind the Coulomb
barrier is fully absorbed; that is, it does not undergo
reflection. For this purpose, we require that, for r <
Rfus, the functions χl(r,α) have the form of converg-
ing waves and not involve components corresponding
to waves reflected from the region 0 ≤ r ≤ Rfus. For
Rfus, Hagino et al. [6] took the point of minimum of
the potential

Veff(r) = V (r, 0) +
�

2

2µ
l(l + 1)

r2
,

which, for r ≤ Rfus, is replaced by the quantity
Veff(Rfus), the coupling of channels being switched
off at the point r = Rfus. The set of coupled Eqs. (14)
then decouples, and we can easily choose their solu-
tions corresponding to converging waves
(exp(−iqr)). However, an abrupt charge in the chan-
nel-coupling interaction, whose strength reaches
maximum values in this region, may in principle lead
to an additional unphysical reflection from the sphere
r = Rfus and, hence, to a significant distortion of the
total wave function in the barrier region.

In order to remove this effect, we will first modify
the phenomenological potential V (r,α) of nucleus–
nucleus interaction in the nuclear-surface-overlap
region r ≤ Rcont(α) ≤ R1(β1, θ1) + R2(β2, θ2), ren-
dering it independent of r in this region, V (r ≤
Rcont,α) = V (Rcont,α). For Rcont(α), we will take
the minimum of two distances from r = 0, that
to the point of minimum of the potential V (r,α)
and that to the point at which the nuclear sur-
faces touch each other. The boundary-value problem
for Eqs. (14) will be considered over the inter-
val (Rmin, Rmax), where Rmax 
 R1 + R2, Rmin ≤
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min{Rcont(α)} in the case of rotations, and Rmin ≤
Rcont(−

√
M1〈β0

1〉,−
√

M2〈β0
2〉) in the case of vibra-

tions; here, M1 and M2 are the maximum numbers
of channels that are taken into account and 〈β0

1〉
and 〈β0

2〉 are the vectors of the root-mean-square
values of the deformation parameters. The centrifugal
potential is also replaced by the constant value

Ul =
�

2

2µ
l(l + 1)

R2
s

for r < Rs, where, for Rs > Rmin, we take the mini-
mum of two distances from r = 0, that to the point of
minimum of the effective potential for spherical nuclei,
Veff(r), and that to the point at which the spherical
nuclei touch each other. The choice of Rmin is rather
arbitrary. It is only of importance that it lie in the
region behind the Coulomb barrier: Rmin < RB(α).
The second item to be mentioned here is that, in for-
mulating boundary conditions at the point r = Rfus =
Rs ≤ Rcont, from which we begin integrating the set
of differential Eqs. (14), we will make use of an exact
solution to these equations in the region r ≤ Rfus.
This solution can easily be found if all coefficients in
these equations are constant.

For r ≤ Rfus, we will further perform the linear
transformation

yl,ν(r) =
∑
n

Yl,n(r)An,ν , (15)

which diagonalizes the matrix Wνµ = Vνµ(Rfus) +
ενδνµ, so that {A−1WA}nm = W̃nnδnm. The new
functions Yl,n(r) satisfy the independent equations

Y ′′
l,n + K2

l,nYl,n = 0, K2
l,n =

2µ
�2

[E − W̃nn − Ul].

(16)

In open channels, the particular solutions
Yl,n(r) = Nl,nexp(−iKl,nr) satisfying these equa-
tions and the conditions Y ′

l,n(r) = −iKl,nYl,n(r)
correspond to a flux toward the interior of the nu-
cleus. From the linear transformation (15), we obtain
boundary conditions for the sought channel wave
functions yl,ν(r) at r ≤ Rfus; that is,

y′l,ν(r) =
∑

n

Y ′
l,n(r)An,ν =

∑
µ

Cνµyl,µ(r), (17)

where

Cνµ = −i
∑
n

An,νKl,n(A−1)n,µ.

The values W̃nn are the eigenvalues of the matrix
Wνµ, while the matrix Anν is composed of its nor-
malized eigenvectors. They can be found explicitly by
applying the so-called QR method [15].

At large distances, the wave function satisfies
standard boundary conditions in the form of an
incident and a diverging wave in the elastic channel
ν = 0 and in the form of diverging waves in all
other channels. For partial wave functions in open
channels, this corresponds to the condition

yl,ν(r → ∞) (18)

=
i

2

[
h

(−)
l (ην , kνr)δν0

−
(

k0

kν

)1/2

Sl
ν0h

(+)
l (ην , kνr)

]
,

where k2
ν = (2µ/�

2)Eν , ην = kνZ1Z2e
2/(2Eν) is

the Sommerfeld parameter, h
(±)
l (ην , kνr) are the

Coulomb partial wave functions whose asymptotic
behavior is exp(±ixl,ν), xl,ν = kνr − ην ln 2kνr +
σl,ν − lπ/2, σl,ν = arg Γ(l + 1 + iην) is the Coulomb
phase shift, and Sl

ν0 is the partial-wave scattering
matrix. Eliminating the unknown quantities Sl

ν0
in (18), we obtain, at large distances, boundary
conditions of the third kind,[

yl,ν
dh

(+)
l

dr
− dyl,ν

dr
h

(+)
l

]
r=Rmax

= k0δν0, (19)

which, together with the conditions in (17), are
sufficient for numerically solving the set of coupled
second-order differential Eqs. (14). For closed chan-
nels (Eν < 0), there arise similar expressions involv-
ing Coulomb functions of an imaginary argument.

In specific calculations, the boundary condi-
tions (18) are actually employed at some finite radius,
Rmax ∼ 30–40 fm. For very heavy nuclei, which are
characterized by large values of Z, the presence
of the weakly decreasing (∼r−3) channel-coupling
Coulomb interaction (4) results in that, at r = Rmax,
the nuclei involved are already in an excited state,
so that it is illegitimate to use the boundary con-
ditions (19) at this point. The physical meaning of
more correct boundary conditions is quite obvious.
The Coulomb repulsion leads to negative dynamical
deformations (oblate nuclei) and to a preferable side-
to-side orientation of rotating quadrupolly deformed
nuclei. There exist two methods for quantitatively
solving this problem. In the region r ≥ Rmax, one
can consider a smaller number of coupled channels
and solve the problem numerically within the interval
Rmax ≤ r ≤ RMAX by using, for example, the approx-
imation of weak channel coupling. Taking RMAX to
be about 300 fm and imposing the “reflection-free”
boundary conditions for r ≤ Rmax, we can find the
values of all channel wave functions at this point
and employ thereupon these values instead of the
boundary conditions (19) in numerically solving the
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full set of Eqs. (14) within the interval Rfus ≤ r ≤
Rmax. An alternative method for deriving more correct
boundary conditions at the point r = Rmax is that
of constructing an analytic solution to the problem
under study in the adiabatic approximation, which
assumes that, with the highest probability, the system
in question moves along the bottom of the multidi-
mensional potential surface. In this case, we can find
the ground state of the system for the Hamiltonian
Hint(α) + V (Rmaxα) and expand thereupon this
state in the functions ϕν(α). The resulting expansion
coefficients will yield the amplitudes of converging
waves for r ≤ Rmax in all channels, not only in the
ν = 0 channel, as is indicated in relation (18). The re-
sults of our analysis of effects of long-range Coulomb
excitation in processes of near-barrier nuclear fusion
will be reported in a dedicated publication.

The channel-coupling interaction V (r,α) can be
broken down into the slowly decreasing Coulomb
component (4) and the fast decreasing nuclear com-
ponent; accordingly, the channel-coupling matrix has
the form Vνµ(r) = V C

νµ(r) + V N
νµ(r). The Coulomb

component of the channel-coupling matrix is known
in an explicit form (see, for example, [6]). In order
to take explicitly into account nonlinear effects of
nuclear interaction, methods of matrix algebra were
applied in [6] in calculating the matrix elements of
V N

νµ(r). As a matter of fact, this approach is equivalent
to expanding the function V N (r,α) in a series in
powers of α to the M th order inclusive, where M is
the maximum number of excited states that are taken
into account. In the present study, the quantities
V N

νµ(r) at each value of r are calculated explicitly
with the aid of the Gauss (for rotations) and Gauss–
Hermite (for vibrations) quadrature formulas of or-
der N . If, in the expansion of the function V N (r,α)
in powers of α, one retains terms to the kth order
inclusive, it is sufficient, for obtaining precise values
of the matrix elements, to use an order N ≥ M +
(k + 1)/2 in each degree of freedom. Our experience
has revealed that the choice of N = M + 10 for
rotations and N = M + 6 for vibrations is sufficient
for obtaining quite an accurate result if use is made of
realistic nucleus–nucleus interactions.

The fusion cross section is determined by the ratio
of the absorbed to the incident flux; that is,

σfus(E) =
π

k2
0

∞∑
l=0

(2l + 1)Tl(E), (20)

where

Tl(E) =
∑

ν

jl,ν

j0
(21)

are the partial-wave barrier-penetrability coefficients.
Here,

jl,ν = −i
�

2µ

(
yl,ν

dy∗l,ν
dr

− y∗l,ν
dyl,ν

dr

)∣∣∣∣
r≤Rfus

is the partial-wave flux in the channel ν and j0 =
�k0/µ. In the fusion of heavier nuclei (especially for
symmetric combinations), the probability that a com-
pound nucleus is formed after the surfaces of colliding
nuclei have come into contact is less than unity be-
cause of quasifission processes [16]. It is very difficult
to calculate this probability [17], and this presents a
problem in itself, which is beyond the scope of the al-
gorithm considered here. For such systems, the cross
section calculated by formula (20) will correspond to
the so-called capture cross section, which is equal to
the sum of the fusion cross section and the quasifis-
sion cross section.

3. CONSTRUCTING A NUMERICAL
SOLUTION TO OUR SET OF COUPLED

EQUATIONS

For a finite number of channel functions, the set
of ordinary differential Eqs. (14) supplemented with
the boundary conditions (17) and (19) forms a mixed
boundary-value problem. In order to solve it numeri-
cally, we introduce a mesh and specify mesh functions
at its nodes as

rj = r0 + jh, yj
l,ν = yl,ν(rj), (22)

j = 0, 1, . . . , J, r0 = Rfus − 2h.

The boundary conditions involving the first deriva-
tive are approximated in terms of a two-point differ-
ence scheme. For open channels, the condition in (19)
leads to the relation

yl,ν(rJ) = τyl,ν(rJ−1) − ζ, (23)

τ =
2 + hγ

2 − hγ
, ζ =

2hkνδν0

(2 − hγ)h(+)
l (ην , kνrJ−1/2)

,

γ =
dh

(+)
l (ην , kνrJ−1/2)/dr

h
(+)
l (ην , kνrJ−1/2)

.

Similar formulas are obtained for closed channels
as well. The boundary condition (17) yields the matrix
relation

yl,ν(r0) =
∑
µ

Θνµyl,µ(r1), Θ = D−1F, (24)

Dνµ = δνµ +
h

2
Cνµ, Fνµ = δνµ − h

2
Cνµ.

In order to approximate differential equations by
finite-difference equations, use is usually made of Nu-
merov’s method, which has been successfully tested
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many times (see, for example, [18]) and which is based
on a three-point approximation of the second deriva-
tive. As a matter of fact, this method ensures an O(h4)
approximation at one step in solving the Schrödinger
equation along the mesh. Numerov’s method was
used in [6] as well. The finite-difference equations
obtained by writing the differential Eqs. (14) at in-
ternal nodes of the mesh and taken together with
the boundary conditions (23) and (24) for the pair of
extreme nodes form a set of linear equations whose
matrix is banded. In order to reduce the number of
nonzero matrix elements in approximating the second
derivative, we employ, instead of Numerov’s method,
the three-point finite-difference scheme

y′′(rj) = h−2(yj−1 − 2yj + yj+1) + O(h2), (25)

the half-width of the resulting matrix appearing to
be one-half as great as that in Numerov’s method.
Although the finite-difference scheme (25) ensures
an O(h2) approximation in solving the Schrödinger
equation, this is quite sufficient for deriving a solution
to a high precision. It should be noted that the error in
numerically solving the boundary-value problem (14)
arises and is accumulated not only because of a finite-
difference approximation of the derivatives involved
but also in solving the set of linear equations. For
h → 0, the first component of this error decreases,
while the second increases because of an increase in
the number of equations and in the number of required
computational operations. As a result, the total error
first decreases and then begins to increase as the step
is reduced. The testing of the two algorithms revealed
that the accuracy of Numerov’s scheme itself is, as a
rule, excessive and that, if use is made of a multisweep
algorithm in solving the boundary-value problem, its
resulting error may exceed the error of the method
based on the scheme in (25).

Since modern computers make it possible to save
the matrix in random-access memory entirely, we will
use the Gauss reduction method to solve our set of
linear equations directly and to determine the values
of yl,ν(rj) at the nodes of the mesh. The main advan-
tage of the approach based on the Gauss reduction
method is its high stability in calculations involving a
finite number of digital places. A scheme consisting of
one direct and one inverse sweep seems preferable to
a scheme involving a few sweeps in one direction that
are followed by solving a set of linear equations for
determining arbitrary constants. In the latter case, the
error can increase because of the loss of the required
accuracy of the decreasing solution in the classically
inaccessible region, this being especially important in
solving problems where there are two turning points.
The use of the Gauss reduction method in order to
solve the set of linear equations directly enabled us
to increase, in relation to the possibility presently

realized in the CCFULL code [6], the number of
channels that are taken into account almost by an
order of magnitude. This is especially important in
the case where a few degrees of freedom are excited
in both nuclei and for avoiding unphysical nuclear-
deexcitation effects associated with stringent con-
straints on the number of coupled channels that are
taken into account. Owing to the storage of all values
of yl,ν(rj) in computer memory, one can also easily
reconstruct the multichannel wave functions (11) and
(13) themselves and, hence, obtain deeper and clearer
insights into the dynamics of penetration through a
multidimensional potential barrier (see below).

4. DISTRIBUTION WITH RESPECT
TO BARRIERS AND SEMIEMPIRICAL

MODEL OF NUCLEAR FUSION

Precision experiments performed in recent years to
measure the energy dependence of the cross section
for near-barrier fusion make it possible to estimate
quite accurately the second derivative of Eσfus(E)
with respect to energy. In the classical limit, this
derivative can be identified with the distribution with
respect to barriers [19],

D(B) =
1

πR2
B

d2(Eσfus)/dE2|E=B. (26)

The discovery of a rather complicated structure
of the function D(B) in the near-barrier region of
energies [2–4] (this structure is different for different
combinations of nuclei) was the main net result of
such measurements. This is indicative of a nontrivial
dynamics of passage through the potential barrier
under conditions of strong channel coupling.

In the absence of channel coupling (this corre-
sponds to the disregard of all degrees of freedom,
with the exception of that which is associated with
the relative motion of spherical nuclei), the effective
interaction potential

Veff(r) = V (r) +
�

2

2µ
l(l + 1)

r2

can be approximated near its maximum by an “in-
verted” parabola,

Veff(r) ≈ B(l) + 1/2V ′′(r)|r=RB
[r − RB(l)]2.

In this case, the barrier penetrability is determined by
the well-known Hill–Wheeler formula [20]

T (l, E) =
[
1 + exp

(
2π

�ωB
[B(l) − E]

)]−1

, (27)

where B(l) and RB(l) are the barrier height and posi-
tion, respectively, and ωB(l) =

√
−V ′′(RB)/µ is the

oscillator frequency, which characterizes the barrier
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width and which, in general, depends on the energy E.
If we now assume that the effective-barrier position
RB(l) changes only slightly in response to a change
in l, the barrier height is given by

B(l) = B +
�

2

2µR2
B

l(l + 1),

where B and RB are, respectively, the barrier height
and position at l = 0. In this case, the barrier pene-
trability T (l, E) does not depend on B and l indepen-
dently, but it is a function of the combination

x = B +
�

2

2µR2
B

l(l + 1) − E;

that is, T (l, E) = f(x). By using expression (20) for
the fusion cross section, we arrive at

d(Eσfus)
dE

=
π�

2

2µ

∞∑
l=0

(2l + 1)
dT (l, E)

dE
. (28)

Since

dT

dE
= −dT

dx
= −dT

dl

(
dx

dl

)−1

= −dT

dl

2µR2
B

�2

1
2l + 1

,

we have

d(Eσfus)
dE

= −πR2
B

∞∑
l=0

dT (l, E)
dl

.

In a collision of heavy nuclei, in which case the cross
section receives large contributions from many partial
waves, T (l, E) is a smooth function of l, so that
the sum in (28) can be replaced by an integral with
respect to l. This integral can be readily evaluated.
The result is d(Eσfus)/dE = πR2

BT (l = 0, E) or

D(E) =
1

πR2
B

d2(Eσfus)
dE2

=
dT (l = 0, E)

dE
. (29)

In the classical case, T (E) = 1 for E > B and
T (E) = 0 for E < B; that is, D(E) = δ(E − B).
In the quantum case, the penetrability of a one-
dimensional barrier has the form (27) and the func-
tion D(E) has one maximum at E = B, its width
being ∆B = �ωB ln(17 + 12

√
2)/2π ≈ 0.56�ωB (for

a parabolic barrier).
In a realistic case, the potential of nucleus–

nucleus interaction is a multidimensional function
(see Fig. 2), so that the incident flux overcomes
the Coulomb barrier at different points—that is, at
different values of B [this corresponds to different
values of the dynamical deformation or (and) different
orientations of the nuclei]. In order to obtain a simple
estimate of the penetrability of such a multidimen-
sional barrier, a semiempirical formula was proposed
in [17] on the basis of a parametrized distribution with

respect to barriers. Within this approach, the total
penetrability is averaged over the barrier height B.
Instead of (27), we then have

T (l, E) =
∫

F (B)
[
1 + exp

(
2π

�ωB
(30)

×
[
B +

�
2

2µR2
B(l)

l(l + 1) − E

])]−1

dB,

where the function F (B) satisfies the normalization
condition

∫
F (B)dB = 1. It can be approximated by

a symmetric Gaussian function having the center
at B0 = (B1 + B2)/2 and the width ∆B = (B2 −
B1)/2. For statically deformed nuclei, the quanti-
ties B1 and B2 are defined as the barriers of the
“nose-to-nose” and “side-to-side” configurations
(see Fig. 2a), which are two limiting configurations.
In this case, one can also employ a direct averaging
over nuclear orientations, determining the actual
barrier B(β1, θ1;β2, θ2). For nuclei of zero static
deformation, B1 corresponds to the minimum height
of the multidimensional barrier with allowance for
a dynamical deformation (saddle point in Fig. 2b),
while B2 corresponds to the barrier in the case of
the interaction of spherical nuclei. Our experience
showed that, in order to describe more accurately
the cross section for the fusion of heavy nuclei,
in which case the difference (B2 − B1) is great, it
would be better to approximate the function F (B)
by a slightly asymmetric Gaussian function having a
smaller “intrinsic” half-width (at smaller values of B)
[17].

5. FUSION CROSS SECTIONS
IN THE PRESENCE OF STRONG CHANNEL

COUPLING

In order to compare the results of our calculations
for the nuclear-fusion cross sections not only with
experimental data but also with the results of the
calculations based on the CCFULL code [6], we em-
ploy here the Woods–Saxon potential for nucleus–
nucleus interaction since the CCFULL code is un-
able to operate with the proximity potential.

In calculating the cross section for the fusion of a
16O nucleus with a deformed nucleus 154Sm, we set
the parameters involved to the following values: V0 =
−105 MeV, rV

0 = 1.12 fm, aV = 0.75 fm (see Fig. 2a),
r1
0 = 1.2 fm, and r2

0 = 1.06 fm; also, we took the
values of β2 = 0.3 and β4 = 0.1 for the parameters of,
respectively, the static quadrupole and the static hex-
adecapole deformation of the 154Sm nucleus and the
value of E2+ = 0.084 MeV for the energy of the first
excited rotational level; in addition, we used the values
of Rmax = 24 fm and h = 0.05 fm. The fusion cross
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Fig. 3. (a) Cross section for the fusion of oxygen nuclei
with a deformed nucleus 154Sm and (b) distribution with
respect to barriers. The dotted curves correspond to the
fusion of spherical nuclei. The dashed and solid curves
represent the results of the calculations by, respectively,
the CCFULL code [6] and our code with allowance for
five rotational states of the 154Sm nucleus. The dash-
dotted curve for the cross section was obtained by a mere
averaging over the orientations of the deformed nucleus.
The displayed experimental data were borrowed from [21].
The arrows indicate the positions of the Coulomb barriers
for spherical nuclei and for two limiting orientations of the
deformed target nucleus.

sections calculated with allowance for the excitation
of five rotational states by using our code and the
CCFULL code are displayed in Fig. 3a along with ex-
perimental data borrowed from [21]. Figure 3b shows
the distribution with respect to barriers,
d2(Eσfus)/dE2, which makes it possible to visualize
in greater detail the “fine structure” and the compli-
cated character of barrier penetrability. As can be seen
from Fig. 3, the two codes in question lead to nearly
identical values for the reaction being considered.
It should be noted that, for the fusion of deformed
nuclei, a correct choice of internuclear interaction
potential in combination with a mere averaging
of one-dimensional barrier penetrabilities over the
orientations of the nuclei involved (as a matter of
fact, over barrier heights—see Fig. 2a) leads to quite
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Fig. 4. (a) Cross section for the fusion of spherical nu-
clei 36S and 90Zr and (b) distribution with respect to
barriers. The dotted curves correspond to the calculation
that disregards dynamical deformations. The dashed and
solid curves represent the results of the calculations by,
respectively, the CCFULL code [6] and our code with al-
lowance for the excitation of four phonons associated with
octupole vibrations of the surface of the 90Zr nucleus. The
dash-dotted curve for the cross section was calculated on
the basis of an empirical model for taking into account
dynamical deformations (see main body of the text). The
displayed experimental data were borrowed from [22].

satisfactory agreement with experimental data both
in what is concerned with the magnitude of the fusion
cross sections in the subbarrier region and in what
is concerned with the shape of the distribution with
respect to barriers.

The cross sections for the fusion of spherical nuclei
36S and 90Zr are shown in Fig. 4a according to cal-
culations that take into account four phonons associ-
ated with octupole vibrations of the surface of the 90Zr
nucleus (λ = 3, �ωλ = 2.75 MeV, 〈β0

λ〉 = 0.22). The
corresponding distributions with respect to barriers
are given in Fig. 4b. The displayed experimental data
were borrowed from [22]. For this case, the nucleus–
nucleus interaction of spherical nuclei was also cho-
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sen in the form of the Woods–Saxon potential, its
depth, range, and diffuseness parameter being set to
V0 = −77.5 MeV, rV

0 = 1.15 fm, and aV = 0.8 fm, re-
spectively. This potential leads to the Coulomb barrier
height of B0 = 78.3 MeV (right arrow in Fig. 4a).
Upon taking into account the octupole vibrations of
the target nucleus, the fusion cross section becomes
much larger in the subbarrier region, the two codes
in question (CCFULL [6] and our code) yielding very
close results.

An increase in the fusion cross section in the sub-
barrier region E < B0 can easily be explained with
the aid of the data in Fig. 2b. For the case of a pro-
late configuration (positive values of βλ), a dynamical
deformation of the surface leads to the lowering of
the Coulomb barrier. As the deformation increases
further, the potential energy increases again because
of a nonzero stiffness Cλ of the nuclear surface. Thus,
we see that, in the total nucleus–nucleus potential,
we can single out the saddle point (rsd, βsd) corre-
sponding to the minimum height Bsd of the Coulomb
barrier in the (r, β) space (see Fig. 2b). Using the
experimental value of the energy of the photon as-
sociated with octupole vibrations of the 90Zr nucleus
(�ωλ=3 = 2.75 MeV), calculating the stiffness of the
corresponding oscillator (see Section 1), and con-
structing the two-dimensional surface of nucleus–
nucleus interaction (similar to that which is shown
in Fig. 2b), we can easily determine, for this case,
the height of the Coulomb barrier at the saddle point,
Bsd = 75.6 MeV (right arrow in Fig. 4a). Assuming
that the incident flux, moving in the (r, β) space, tra-
verses the two-dimensional barrier at various values
of the dynamical deformation in the range 0 ≤ β <
βsd, we can approximate the distribution with respect
to barriers by a Gaussian function having a center
at the point (B0 + Bsd)/2 and the half-width (B0 −
Bsd)/2 and calculate thereupon the total fusion cross
section. The cross section obtained on the basis of
this semiempirical approach is in rather satisfactory
agreement both with experimental data and with the
results of our precise calculations (see dash-dotted
curves in Fig. 4), furnishing, at the same time, quite
a clear explanation for an increase in the subbarier
penetrability and in the width of the distribution with
respect to barriers.

The data in Fig. 5, which shows the squared mod-
ulus of the two-dimensional wave function describing
the relative motion of 36S and 90Zr nuclei in (r, sλ=3)
space, where sλ=3 =

√
(2λ + 1)/4πR0βλ=3 is the

absolute value of the octupole deformation of the 90Zr
nucleus, provides an additional piece of evidence in
support of this qualitative pattern. It can be seen that,
at large distances, the multichannel wave function
is concentrated in the region of small deformations,
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Fig. 5. Topographical landscape of the squared modulus
of the two-dimensional wave function (13) (solid curves),
which describes the fusion of 36S and 90Zr nuclei at l = 0,
against the background of the landscape of the potential
energy (dashed curves) at energies of Еc.m. = (a) 77 and
(b) 80 MeV. The cross indicates the position of the saddle
point of the Coulomb barrier.

β3 ≈ 0, this reflecting the dominance of zero-point
vibrations of the nuclear ground state ϕν=0(β) in
the expansion given by (13). At low energies (slow
collisions), the nuclei involved undergo considerable
deformations at the instant of coming into contact,
the Coulomb barrier being overcome predominantly
at positive values of the deformation (the stretching
of the nuclei toward each other), which lead to the
lowering of this barrier (see Fig. 2a and the landscape
of the potential energy in Fig. 5). That the modulus
of the wave function oscillates at large distances is
due to the interference between the incident and the
reflected wave.
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6. SYNTHESIS OF SUPERHEAVY NUCLEI
In the fusion of very heavy nuclei, which are used,

in particular, in the synthesis of superheavy elements,
the coupling of channels plays an even more sig-
nificant role. For this region of nuclei, available ex-
perimental data on fusion cross sections are much
scarcer; moreover, no experimental data for nuclear
combinations close to symmetric ones can be ob-
tained in principle because it is impossible, in this
case, to separate products originating from processes
of deep-inelastic scattering, on one hand, and from
the fission of a compound nucleus, on the other hand.
In view of this, theoretical calculations and predic-
tions are of paramount importance in this region of
nuclei. The reliability of such predictions is not very
high at the present time not only because of problems
encountered in taking into account the coupling of
several degrees of freedom in the process of near-
barrier fusion but also because of inaccuracies in
determining the nucleus–nucleus interaction. Until
recently, there has been no possibility for perform-
ing quantum calculations of the fusion of very heavy
nuclei within the coupled-channel method, because
the operation of the existing algorithms (including
the CCFULL code) is highly unstable in this case. It
turned out that our new algorithm for solving a set of
a large number of coupled equations makes it possible
to perform such calculations.

Figure 6 shows the experimental and theoretical
cross sections for the fusion of 48Ca and 238U nuclei.
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The displayed experimental data, which were taken
from [23], correspond to all products of fission (both
ordinary fission and prompt fission proceeding with-
out the formation of a compound nucleus); therefore,
it is more correct, in this case, to refer to this quantity
as the capture cross section (see the comment at
the end of Section 2). For the nuclear interaction,
we again took the Woods–Saxon potential with pa-
rameters V0 = −160 MeV, rV

0 = 1.14 fm, and aV =
0.65 fm, which ensure the Coulomb barrier height
of B = 194 MeV, predicted by the Bass model [24]
for these nuclei. The static quadrupole deformation
of β2 = 0.215 [25], which is realized for the 238U nu-
cleus, leads to the barrier heights of B1 = 185.4 MeV
and B2 = 199.2 MeV for two limiting orientations
of the nuclei. Employing the semiempirical model of
nuclear fusion and approximating the function F (B)
in (30) by an asymmetric Gaussian function whose
width is ∆1

B = (B2 − B1)/2 ≈ 7 MeV for the right
branch (large values of B) and ∆2

B = 5 MeV for the
left branch (as a matter of fact, this is an adjustable
parameter here), we have also obtained quite satisfac-
tory agreement with experimental data (dash-dotted
curve in Fig. 6).

The squared modulus of the two-dimensional
wave function describing the relative motion of 48Ca
and 238U nuclei is shown in Fig. 7 versus the distance
r and the angle θ of rotation of the deformed uranium
nucleus. For the interaction of these two nuclei, Fig. 7
also displays the potential-energy landscape, which
is similar to that in Fig. 2a. The value chosen for
the collision energy, Еc.m. = 194 MeV, is above the
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Coulomb barrier height at θ = 0◦ (about 185 MeV)
and below this barrier at θ = π/2 (about 200 MeV).
As can be seen from the figure, the incident wave
therefore overcomes the barrier almost freely only
at small θ (in the nose-to-nose configuration), but
it is almost completely reflected from the barrier at
θ ∼ π/2. At large distances, this leads to a strong
interference between the incident and the reflected
wave at θ ∼ π/2 and to an almost complete absence
of interference at small θ.

In conclusion, we note that the algorithms devel-
oped by us for calculating the cross sections for the
near-barrier fusion of heavy nuclei (coupled-channel
method and semiempirical model) and used in the
present study can be found, together with the code
for computing multidimensional potential surfaces,
on the freely accessible Web server quoted in [26].
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APPENDIX 1

Local Curvature of the Surface of a Deformed
Nucleus and Geometric Factor

In terms of polar coordinates, the local curvature
of a curve in a plane can be represented as [11, for-
mula (17.1-9)]

k =

[
ρ2 + 2

(
dρ

dϕ

)2

− ρ
d2ρ

dϕ2

][
ρ2 +

(
dρ

dϕ

)2
]−3/2

.

(A.1)

In the case of dynamical deformations along the
common symmetry axis of the nuclei (nose-to-nose
orientation), any curve lying on the surface of a nu-
cleus in a plane containing the symmetry axis is given
by (1); that is, ρ(ϕ) ≡ R(θ). At small angles (θ � 1),
we can use an approximate expression for Legendre
polynomials,

Pλ(cos θ) ≈ 1 − η(λ)(1 − cos θ), θ � 1,

where η(λ) = 3 · 4 · · · (λ + 1)/(λ − 1)!, whereupon
the equation of the surface takes the form

R(θ) = a + b cos θ, (A.2)

a = R̃


1 +

∑
λ≥2

βλ (1 − η(λ))

√
2λ + 1

4π


 ,

b = R̃


1 +

∑
λ≥2

βλη(λ)

√
2λ + 1

4π


 .

At θ = 0, the substitution of (A.2) into (A.1) yields

k⊥ = k|| = k =
a + 2b

(a + b)2
, (A.3)

k = R̃−1


1 +

∑
λ≥2

√
2λ + 1

4π
βλ




−2

(A.4)

×


1 +

∑
λ≥2

(1 + η(λ))

√
2λ + 1

4π
βλ


 ,

whence we obtain formula (7).

In the case of statically deformed nuclei rotating in
the reaction plane, a calculation of a local curvature
for an arbitrary orientation of the symmetry axes of
the nuclei leads to more cumbersome formulas. A
simple expression is obtained for the limiting case of
θ = π/2 (side-to-side configuration). Since a static
quadrupole deformation is the most peculiar to nuclei,
we consider here only the case of λ = 2. Using the ex-
pression (3 cos 2θ + 1)/4 for the Legendre polynomial
P2(cos θ), we obtain

R(θ) = a′ + b′ cos 2θ, (A.5)

where

a′ = R̃

[
1 +

1
4
β2

√
5
4π

]
, b′ =

3
4
R̃β2

√
5
4π

.

The substitution of (A.5) into (A.1) at θ = π/2 yields

k|| =
a′ − 5b′

(a′ − b′)2
=

RA

R2
B

, k⊥ =
1

RB
(A.6)

where

RA = R̃

[
1 − 7

2
β2

√
5
4π

]
,

RB = R(θ = π/2) = R̃

[
1 − 1

2
β2

√
5
4π

]
.

A further calculation of the local geometric factor
Gloc = Psph/P is performed with the aid of for-
mula (6), which, as was mentioned above, leads to
a singularity when two planar surfaces touch each

other [k⊥
1 + k⊥

2 = 0 or (and) k
||
1 + k

||
2 = 0].
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Fig. 8. Schematic representation of two deformed nuclei in the nose-to-nose configuration (the horizontal dashed line is the
symmetry axis): (a) positive deformations and (b) negative deformations. More darkly shaded segments are regions that make
a dominant contribution to nucleus–nucleus interaction.

APPENDIX 2

Geometric Factor with Allowance for the Finiteness
of the Range of Nuclear Forces and Dimensions

of Deformed Nuclei

In principle, a precise value of the geometric fac-
tor can be obtained by using the folding procedure
for calculating the potential for the nucleus–nucleus
interaction. In this case, the finiteness of nuclear
sizes and of the range of nucleon–nucleon interaction
guarantees the absence of singularities even in the
case of zero local curvature at the point where the
nuclear surfaces touch each other. In specific applica-
tions (especially in dynamical calculations), however,
it is more convenient to use, instead of folding po-
tentials, some analytic expression (like the Woods–
Saxon potential or the proximity potential) that would
represent the nucleus–nucleus interaction and which
would take into account the change in the curvature
of nuclear surfaces at large deformations. An approx-
imate value of the geometric factor can be obtained
with the aid of the expression

G =
∆V1(β1, θ1; a1) + ∆V2(β2, θ2; a2)

∆V 0
1 (a1) + ∆V 0

2 (a2)
, (A.7)

where ∆Vi(βi, θi; ai) are the volumes of the most
closely spaced small segments of the nuclei being
considered (see Fig. 8), ∆V 0

i (ai) = (π/3)a2
i (3R −

ai) are the volumes of the segments of the corre-
sponding spherical nuclei, a1/a2 = (R2− a/2)/(R1−
a/2), and a ≈ 1 fm. We will first consider the defor-
mation along the common symmetry axis of the nuclei
(Fig. 8a). In this case, the volume of the nose segment
is given by

∆Vi =
2π
3

R̃3
i

1∫
ti0

[
1 +

∑
λ

βiλ

√
2λ + 1

4π
Pλ(t)

]3

dt

(A.8)

− π

3
(R0

i − ai)3(1/ti
2

0 − 1),

where R0
i = Ri(βi, θ = 0) and ti0 is found from the

equation (t ≡ cos θ)

R(t)t = R0
i − ai. (A.9)

This equation can be solved explicitly if a parabolic
approximation of Legendre polynomials is used in the
range 0 < t ≤ 1; that is,

Pλ(t) ≈ −pλ + αλ(t − τλ)2, (A.10)

where pλ = {1/2,
√

1/5, 3/7}, τλ = {0,
√

1/5,√
3/7}, and αλ = (1 + pλ)/(1 − τλ)2 at λ = 2, 3,

and 4, respectively. In this case, Eq. (A.9) is a cubic
equation, and we must take the positive root of
this equation for ti0. Integration in (A.8) can also
be performed explicitly. For the volume of the nose
segment of a deformed nucleus, this yields a rather
cumbersome expression, but it is readily calculable.
Obviously, the geometric factor (A.7) does not have
singularities, remaining finite at any deformations.

At large negative deformations, the nuclear sur-
face at the point θ = 0 first becomes flat and then
assumes a concave shape (see Fig. 8b). In this case,
the “interacting-layer” thickness a must be reckoned
not from the point R0

i = Ri(βi, θ = 0), which lies on
the symmetry axis, but from the point that lies on
the surface and which is the most remote from the
center of the nucleus along the axis connecting the
centers of the nuclei—that is, from the point RC

i ≡
Ri(tiC)tiC in Fig. 8b, which is found from the condition
d[R(t)t]/dt|tC = 0. In this case, the quantity ti0 ≡
cos θi

0 is as before determined from Eq. (A.9), where
R0

i is replaced by RC
i . In Fig. 9, the geometric factor

calculated by formula (A.7) is contrasted against the
local approximation Gloc = Psph/P . It can be seen
that, in the region of positive and small negative de-
formations, the approximation of “finite segments” is
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Fig. 9. Geometric factor calculated for the case of iden-
tical dynamical quadrupole deformations (β1,2 = β2,2 =

β2) of the interacting nuclei 36S and 90Zr. The dashed
curve corresponds to the local approximation Gloc =
Psph/P . The solid and the dotted curve were calculated
by formula (A.7) at a = 1 and 2 fm, respectively. The
arrow indicates the “critical” deformation at which the
local curvature of the surface featuring a quadrupole de-
formation vanishes (contiguity of two flat surfaces).

weakly dependent on a and is virtually coincident with
the local approximation.

For rotating deformed nuclei, the volumes of the
“interacting segments,” ∆Vi(βi, θi; ai), depend on
the orientation of the symmetry axes of the nuclei. As
was indicated above, a static quadrupole deformation
is the most peculiar to nuclei—that is, β

g.s.
3,4 � β

g.s.
2 .

In addition, we note that, at a ≈ 1 fm, the deviation of
the volumes ∆Vi(βi, θi; ai) from the spherical ones is
much less for higher multipole orders than for λ = 2.
In calculating the angular dependence of the geomet-
ric factor, one can therefore take into account only
static quadrupole deformations of interacting nuclei.
In order to calculate the volume of the side segment
of a nucleus (side-to-side orientation of nuclei—that
is, θi = π/2), we can again use formula (A.9) to
find the angle θi

0 (ti0 ≡ cos θi
0) of the corresponding

cone. In this formula, however, we must replace R0
i =

Ri(βi, θ = 0) by RB
i = Ri(βi, θ = π/2). In this case,

the base of the segment is an ellipse whose semiaxes

are A =
√

2RB
i ai − a2

i and B = (RB
i − ai)/tanθi

0, its

volume being approximately

∆Vi =
π

2
a2

i

√
2RB

i − ai(RB
i − ai)/tanθi

0. (A.11)

Knowing the volumes of the surface segments for
the two limiting orientations—∆V N

i calculated by
formula (A.8) at θi = 0 and ∆V S

i calculated by for-
mula (A.11) at θi = π/2—one can approximate the

volume of the segment of an arbitrarily rotated nu-
cleus by the simple expression ∆Vi(θi) = 0.5(∆V S

i +
∆V N

i )− 0.5(∆V S
i − ∆V N

i ) cos 2θi and then use for-
mula (A.7) to calculate the geometric factor in the
potential of the interaction of two deformed nuclei
arbitrarily rotated in the reaction plane.
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