Low Energy Nuclear Reactions with Transactinides

- Reactions under consideration
- Fusion-fission driving potential and dynamical model
- Fusion dynamics and synthesis of SHE
- Shell effects in damped collisions : New way to superheavies
- Resume

V. Zagrebaev TAN-2007, Davos, September 24

Studied Reactions

$$\begin{bmatrix} Th \div Cf \end{bmatrix} + \begin{bmatrix} Th \div Cf \end{bmatrix} Targ Targ Targ Targ Targ The set of t$$

Diabatic and Adiabatic Potential Energy

 $V_{\text{diabat}}(R,\beta_1,\beta_2,\alpha,...) = V_{12}^{\text{folding}}(Z_1,N_1,Z_2,N_2;R,\beta_1,\beta_2,...) + M(A_1) + M(A_2) - M(\text{Proj}) - M(\text{Targ})$

 $V_{\text{adiabat}}(\mathsf{R},\beta_1,\beta_2,\alpha,...) = \mathsf{M}_{\mathsf{TCSM}}(\mathsf{R},\beta_1,\beta_2,\alpha,...) - \mathsf{M}(\mathsf{Proj}) - \mathsf{M}(\mathsf{Targ})$

Time - dependent driving potential has to be used $V(t) = V_{\text{diab}}(\xi) \cdot exp(-\frac{t_{\text{int}}}{\tau_{\text{relax}}}) + V_{\text{adiab}}(\xi) \cdot [1 - exp(-\frac{t_{\text{int}}}{\tau_{\text{relax}}})]$ $\tau_{\text{relax}} \sim 10^{-21} \text{ s}$ the same degrees of freedom !

Calculation of multi-dimensional adiabatic potential energy ?

(1) Lack of standard macro-micro adiabatic potential

Extended Two-Center Shell Model, Zagrebaev, Karpov et al., Phys. Part. Nucl., **38**, 2007

Time dependent adiabatic fusion-fission potential

 $V_{\text{adiab}}(r,\delta,\eta,\varepsilon,t) = V_{\text{adiab}}(r,\delta,\eta,\varepsilon=1) \cdot exp\left(-\frac{t}{\tau_{\varepsilon}}\right) + V_{\text{adiab}}(r,\delta,\eta,\varepsilon=\varepsilon_{\text{out}}) \cdot \left[1 - exp\left(-\frac{t}{\tau_{\varepsilon}}\right)\right]$

Time-dependent driving potential

 $\frac{dR}{dt} = \frac{p_R}{\mu_R}$ Variables: {R, θ , ϕ_1 , ϕ_2 , β_1 , β_2 , η } $\frac{d\Theta}{dt} = \frac{\ell}{\mu_R R^2}$ Most uncertain parameters: μ_0, γ_0 - nuclear viscosity and friction. p1 λo - nucleon transfer rate $\frac{d\varphi_1}{dt} = \frac{L_1}{\Im_1}, \ \frac{d\varphi_2}{dt} = \frac{L_2}{\Im_2}$ φ1 $\frac{d\beta_1}{dt} = \frac{p_{\beta 1}}{\mu_{\beta 1}}$ 82 A₁ P b θ $\frac{d\beta_2}{d\beta_2} = \frac{p_{\beta 2}}{p_{\beta 2}}$ $\eta = \frac{A_1 - A_2}{A_1 + A_2}$ φ2 $dt \mu_{\beta 2}$ A2 $\frac{d\eta}{dt} = \frac{2}{A_{CN}} D_A^{(1)}(\eta) + \frac{2}{A_{CN}} \sqrt{D_A^{(2)}(\eta)} \Gamma_{\eta}(t)$ $\frac{dp_R}{dt} = -\frac{\partial V}{\partial R} + \frac{\ell^2}{\mu_R R^3} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right)\frac{\partial \mu_R}{\partial R} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2}\frac{\partial \mu_{\beta_1}}{\partial R} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2}\frac{\partial \mu_{\beta_2}}{\partial R} - \gamma_R \frac{p_R}{\mu_R} + \sqrt{\gamma_R T}\Gamma_R(t)$ $\frac{d\ell}{dt} = -\frac{\partial V}{\partial \vartheta} - \gamma_{\text{tang}} \left(\frac{\ell}{\mu_{p}R} - \frac{L_{1}}{\Im_{1}}a_{1} - \frac{L_{2}}{\Im_{2}}a_{2} \right) R + \sqrt{\gamma_{\text{tang}}T}\Gamma_{\text{tang}}(t)$ $\frac{dL_1}{dt} = -\frac{\partial V}{\partial \varphi_1} + \gamma_{\text{tang}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_1 - \frac{a_1}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dL_2}{dt} = -\frac{\partial V}{\partial \varphi_2} + \gamma_{\text{tan}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_2 - \frac{a_2}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dp_{\beta_1}}{dt} = -\frac{\partial V}{\partial \beta_1} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_1} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_1} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_1} - \gamma_\beta \frac{p_{\beta_1}}{\mu_{\beta_1}} + \sqrt{\gamma_{\beta_1} T} \Gamma_{\beta_1}(t)$ $\frac{dp_{\beta_2}}{dt} = -\frac{\partial V}{\partial \beta_2} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_2} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_2} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_2^2}\right) \frac{\partial \mu_R}{\partial \beta_2} - \gamma_\beta \frac{p_{\beta_2}}{\mu_R} + \sqrt{\gamma_{\beta_2} T} \Gamma_{\beta_2}(t)$

Simulation of experiment and cross sections

Dynamics: 10^{6} tested events (trajectories), Statistical model: 10^{-6} (3n), 10^{-7} (4n) survival probability cross sections up to 0.1 pb can be calculated

248 Cm + 48 Ca \leftrightarrow 296 116

Motion in multi-dimensional space

Deep-Inelastic Scattering

Quasi-fission process

Symmetric quasi-fission

Deep-Inelastic Scattering: ¹³⁶Xe + ²⁰⁹Bi

Quasi-fission and fusion-fission processes

Cross sections for superheavy element production

On the way to the first Island of Stability

Cross sections for SHE production

Synthesis of 120: ${}^{54}Cr + {}^{248}Cm \rightarrow {}^{302}120$ or ${}^{58}Fe + {}^{244}Pu \rightarrow {}^{302}120$

Fusion of "fission fragments": ${}^{136}Xe + {}^{136}Xe \rightarrow {}^{272}108$ if OK then ${}^{132}Sn + {}^{176}Yb \rightarrow {}^{308}120$

Collision of very heavy (transactinide) nuclei ?

atomic mass number

Comparison with available experimental data

Shell effects in damped collisions ¹⁶⁰Gd + ¹⁸⁶W (proposal for a new experiment)

Shell effects in damped collisions of transactinides. New way to superheavies

Isotopic yield of SHE in collisions of transactinides

Spontaneous positron emission in super-strong electric field

W. Greiner, J. Reinhard, 1981

What are the triggers for a long reaction time ?

0.1

10-19

A ≤ 204

10-20

interaction time (seconds)

10-21

1000

100

10

0.1

10-21

and $\theta_{c.m.} < 70^{\circ}$

interaction time (seconds)

10-20

 $d\sigma/dlog(\tau)$ (mb/unit)

3-body clusterization in collisions of transactinides

Clusterization and time-delay

Summary

•

- For the first time a new model is developed for the simultaneous description of all strongly coupled channels: Deep-Inelastic scattering, Quasi-Fission, Fusion and regular Fission. The whole evolution of the heavy nuclear system can be traced starting from the infinite distance and ending in DI, QF, and/or Fusion-Fission channels.
- Cross sections of SHE formation in fusion reactions of ⁵⁰Ti, ⁵⁴Cr, ⁵⁸Fe,... with transactinide targets are significantly lower as compared with ⁴⁸Ca induced reactions. Only extraordinary shell effects at Z>=120 may change the situation.
- Cross sections of SHE formation in symmetric fusion reactions

 (including neutron rich fission fragments) are estimated at the level of 0.1 pb.
 Such reactions may be used only for synthesis of rather stable (well survivable) superheavies
 at above-barrier beam energies (4n, 5n, ... evaporation channels).
- Shell effects in low-energy damped collisions of transactinides may lead to a noticeable yield of long-lived neutron-rich SHE due to a large mass and charge rearrangement in the "inverse quasi-fission" process caused by the Z=82 and N=126 nuclear shells.