Production and Study of New Neutron Rich Heavy Nuclei in Multinucleon Transfer Reactions

- State of the art: neutron rich heavy nuclei are not synthesized yet
- **Outline of the model** (2 slides only)
- Our predictions and proposals:
 - Shell effects in damped collisions of heavy ions ?
 - Production of trans-target nuclei (inverse quasi-fission process)
 - Synthesis of neutron enriched transfermium nuclei
 - Production of neutron rich nuclei located along the neutron closed shell N=126
- New setup for selective laser separation of heavy neutron rich nuclei
- Summary

Valeriy Zagrebaev

Flerov Laboratory of Nuclear Reactions, JINR, Dubna *for "HIAS-2013", April 11, 2013, Canberra, Australia*

At the present time there are no neutron rich heavy and superheavy nuclei

r-process of nucleosynthesis and the neutron closed shell in the region of N=126

Abundance of the elements in the Universe

The 11 Greatest Unanswered Questions of Physics (National Research Council, NAS, USA, 2002):

- 1. What is dark matter?
- 2. What is dark energy?

3. How were the heavy elements from iron to uranium made?

4. Do neutrinos have mass?

Old the second seco 50 Ti + 249 Bk \rightarrow 119 ← ⁴⁸Ca + ²⁵¹Cf protons 118 117 last 30 years 116 Lv 115 Island 114 Fl of Stability Cn Rn 110 Ds Mt Hs beta - stability line Bh Sg 105 Db Rf Lr No Md Fm Es Cf Bk Cm Am Pu neutrons Np 155 160 165 170 175 180 U

SHE: we are far from the stability line and from the Island of Stability

5

There are only 3 methods for synthesis of heavy nuclei

1. Fusion reactions: beams of stable nuclei (\rightarrow proton rich), radioactive ion beams (no chances)

2. Sequence of neutron capture and beta(-) decay processes: neutron fluxes in reactors are too low, nuclear explosions are forbidden

3. Multi-nucleon transfer reactions

Synthesis of heavy and SH nuclei in transfer reactions

- [1] E. K. Hulet *et al.*, Phys. Rev. Lett. **39**, 385 (**1977**).
- [2] M. Schaedel *et al.*, Phys. Rev. Lett. **41**, 469 (**1978**).
- [3] H. Essel, K. Hartel, W. Henning, P. Kienle, H. J. Koerner, K. E. Rehm, P. Sperr, W. Wagner, and H. Spieler, Z. Phys. A 289, 265 (1979).
- [4] H. Freiesleben, K. D. Hildenbrand, F. P["]uhlhofer, W. F. W. Scneider, R. Bock, D. V. Harrach, and H. J. Specht, Z. Phys. A 292, 171 (1979).
- [5] H. Gaeggeler et al., Phys. Rev. Lett. 45, 1824 (1980).
- [6] M. Schaedel et al., Phys. Rev. Lett. 48, 852 (1982).
- [7] K. J. Moody, D. Lee, R. B. Welch, K. E. Gregorich, G. T. Seaborg, R. W. Lougheed, and E. K. Hulet, Phys. Rev. C 33, 1315 (1986).
- [8] R. B. Welch, K. J. Moody, K. E. Gregorich, D. Lee, and G. T. Seaborg, Phys. Rev. C **35**, 204 (**1987**).

... a long history. New isotopes of Fm and Md were synthesized 30 years ago.

Theoretical models of transfer reactions

Multi-nucleon transfers in damped collisions

Master equation L.G. Moretto and J.S. Sventek, Phys. Lett. B 58, 26 (1975)

Fokker-Plank equation

W. Norenberg, Phys. Lett. B 52, 289 (1974)

Langevin equations

P. Frobrich and S.Y. Xu, Nucl. Phys. A477, 143 (1988)

Semi-classical approaches

E. Vigezzi and A. Winther, Ann. Phys. (N.Y.) **192**, 432 (1989). V.I. Zagrebaev, Ann. Phys. (N.Y.) **197**, 33 (1990).

Few-nucleon transfers (GRAZING)

A. Winther, Nucl. Phys. **A594**, 203 (1995) http://personalpages.to.infn.it/nanni/grazing

Adiabatic dynamics of low-energy heavy ion collisions and nucleon transfers

 $\frac{dR}{dR} = \frac{p_R}{p_R}$ Variables: {R, θ , ϕ_1 , ϕ_2 , β_1 , β_2 , η_7 , η_N } $\frac{\frac{d\theta}{d\theta}}{\frac{d\theta}{dt}} = \frac{\frac{\mu_R}{\mu_R}}{\frac{\ell}{\mu_R}R^2}$ Most uncertain parameters: μ_0, γ_0 - nuclear viscosity and friction, λ_Z^0 , λ_N^0 - nucleon transfer rate $\frac{d\varphi_1}{dt} = \frac{L_1}{\mathfrak{I}_1}, \ \frac{d\varphi_2}{dt} = \frac{L_2}{\mathfrak{I}_2}$ $\eta = \frac{A_{1} - A_{2}}{A_{1} + A_{2}}$ $\eta_{Z} = \frac{Z_{1} - Z_{2}}{Z_{1} + Z_{2}}$ φ1 $\frac{d\beta_1}{dt} = \frac{p_{\beta 1}}{\mu_{\beta 1}}$ R A₁ μ_{B1} b θ. $\frac{d\beta_2}{dt} = \frac{p_{\beta 2}}{\mu_{\beta 2}}$ $\eta_{N} = \frac{N_{1} - N_{2}}{N_{1} + N_{2}}$ $\langle \varphi_2 \rangle$ Α2 $\frac{d\eta_{z}}{dt} = \frac{2}{Z_{\rm CN}} D_{\rm Z}^{(1)} + \frac{2}{Z_{\rm CN}} \sqrt{D_{\rm Z}^{(2)}} \Gamma_{\rm Z} (t)$ $\lambda_{\mathbf{Z}}^{\mathbf{0}} = \lambda_{\mathbf{N}}^{\mathbf{0}} = \frac{\lambda_{\mathbf{Q}}^{\mathbf{0}}}{2}$ $\frac{d\eta_{\rm N}}{dt} = \frac{2}{N_{\rm CN}} D_{\rm N}^{(1)} + \frac{2}{N_{\rm CN}} \sqrt{D_{\rm N}^{(2)}} \Gamma_{\rm N} (t)$ $\frac{dp_R}{dt} = -\frac{\partial V}{\partial R} + \frac{\ell^2}{\mu_R R^3} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right)\frac{\partial \mu_R}{\partial R} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2}\frac{\partial \mu_{\beta_1}}{\partial R} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2}\frac{\partial \mu_{\beta_2}}{\partial R} - \gamma_R \frac{p_R}{\mu_R} + \sqrt{\gamma_R T}\Gamma_R(t)$ $\frac{d\ell}{dt} = -\frac{\partial V}{\partial 9} - \gamma_{\text{tang}} \left(\frac{\ell}{\mu_{\text{n}}R} - \frac{L_{1}}{\Im_{1}}a_{1} - \frac{L_{2}}{\Im_{2}}a_{2} \right) R + \sqrt{\gamma_{\text{tang}}T}\Gamma_{\text{tang}}(t)$ $\frac{dL_1}{dt} = -\frac{\partial V}{\partial \varphi_1} + \gamma_{\text{tang}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_1 - \frac{a_1}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dL_2}{dt} = -\frac{\partial V}{\partial \varphi_2} + \gamma_{\text{tan}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_2 - \frac{a_2}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dp_{\beta_1}}{dt} = -\frac{\partial V}{\partial \beta_1} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_1} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_1} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_1} - \gamma_\beta \frac{p_{\beta_1}}{\mu_{\beta_1}} + \sqrt{\gamma_{\beta_1} T} \Gamma_{\beta_1}(t)$ $\frac{dp_{\beta_2}}{dt} = -\frac{\partial V}{\partial \beta_2} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_2} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_2} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_2} - \gamma_\beta \frac{p_{\beta_2}}{\mu_{\beta_2}} + \sqrt{\gamma_{\beta_2} T} \Gamma_{\beta_2}(t)$

11

Typical trajectory in the "distance-deformation-mass asymmetry" space (48Ca + 248Cm, E=210 MeV)

Simulation of experiment and cross sections

Dynamics: 10^{6} tested events (trajectories), Statistical model: 10^{-6} (3n), 10^{-7} (4n) survival probability cross sections up to 0.1 pb can be calculated

Comparison with experiment on multi-nucleon transfer

Quite satisfactory agreement with experiments on DI scattering

Quasi-Fission process: ⁴⁸Ca + ²⁴⁸Cm

Multi-nucleon transfers for production of Super-Heavy Elements (choice of reaction is very important)

17

"Inverse quasi-fission" reactions

238U + 248Cm. Primary fragments

Production of transfermium nuclei along the line of stability looks quite possible owing to shell effects

Rather wide angular distribution of reaction fragments: a new kind of separator is needed

Shell effects in low-energy multi-nucleon transfer reactions ?

Underestimation of the yield of trans-target nuclei ?

Production of new heavy nuclei in the region of N=126

proton transfer along the neutron closed shells: ${}^{136}Xe_{N=82} + {}^{208}Pb_{N=126} \rightarrow {}^{136+\Delta Z}X_{N=82} + {}^{208-\Delta Z}Y_{N=126} + Q \approx 0$ Reactions with $Q \approx 0$ are very favorable for proton transfer The use of ${}^{132}Sn$ is even better !

Isotope production with radioactive beams, Dasso, Pollarolo, Winther, PRL 1994

Production of neutron rich heavy nuclei located along the last "waiting point" of astrophysical nucleosynthesis

New setup for selective laser ionization of multi-nucleon transfer reaction products stopped in gas

Selective laser ionization of Au & Hg atoms

Summary

- North-east part of the nuclear map is still "terra incognita". Heavy neutron rich nuclei are not synthesized and studied yet.
- Multi-nucleon transfer reactions can be used for synthesis of new neutron enriched transfermium nuclei located along the beta-stability line. U-like beams are needed as well as a new kind of separator!
- Multi-nucleon transfer reactions can be used also for synthesis of new neutron rich nuclei located along the closed neutron shell N=126 having the largest impact on the astrophysical r-process. Cross sections are higher than 1 μb.
- Shell effects and dynamics of the "inverse quasi-fission processes" in HI damped collisions should be studied much better. There are several quite promising experiments to be perform just now.

Valeriy Zagrebaev (FLNR, Dubna)

Walter Greiner (FIAS, Frankfurt)

