Formation of Super-Heavy Elements
in Astrophysical Nucleosynthesis

• SHE: state of the art

• Search of SHE in nature (short historical sketch)

• Neutron capture process:
 • Equations of nucleosynthesis
 • Multiple nuclear explosions
 • Pulsed nuclear reactors
 • Synthesis of SH nuclei in astrophysical r process

• Summary

Valeriy Zagrebaev
Flerov Laboratory of Nuclear Reactions, JINR, Dubna
for “NSD-II”, July 10, 2012, Opatija, Croatia
2011: a new player has gone in the field
We are still far from the Island of Stability
How can we synthesize superheavy nuclei?

1. **Fusion reactions**: beams of stable nuclei, radioactive ion beams (no chances in near future)

2. **Multi-nucleon transfer reactions** (have been tested 30 years ago)

3. **Neutron capture** [+ subsequent beta(-) decay] processes:
 - nuclear explosions,
 - nuclear reactors,
 - supernova
New elements 119 and 120 are coming!

Ti beam:
TASCA (April, 2012)

$^{50}\text{Ti} + ^{249}\text{Bk} \rightarrow ^{299}\text{119}$

$\sigma \sim 50 \text{ fb}$

$^{50}\text{Ti} + ^{249}\text{Cf} \rightarrow ^{299}\text{120}$

$\sigma \sim 40 \text{ fb}$

Cr beam:
SHIP (May, 2011)

$^{54}\text{Cr} + ^{248}\text{Cm} \rightarrow ^{302}\text{120}$

$\sigma \sim 25 \text{ fb}$

predictions: Zagrebaev & Greiner, PRC 2008

factor $\frac{1}{20}$ as compared to ^{48}Ca

Probably, these elements are the last ones which will be synthesized in the nearest future.
Search for SHE in cosmic rays
1971, Dubna, P. Fowler: Tracks of SHE!?
On Search and Identification of Relatively Short-Lived Superheavy Nuclei \((Z \geq 110)\) by Fossil Track Studies of Meteoritic and Lunar Olivine Crystals

V. P. Perelygin\(^{1)}\), Yu. V. Bondar\(^{2)}\), R. Brandt\(^{3)}\), W. Ensinger\(^{3)}\), R. L. Fleischer\(^{4)}\), L. I. Kravets\(^{1/2)}\), M. Rebetez\(^{5)}\), R. Spohr\(^{6)}\), P. Vater\(^{3)}\), and S. G. Stetsenko\(^{1)}\)

\[Z \approx 90, \ N = 1600 \]
\[Z \approx 114, \ N = 11 \]
Search for SHE in terrestrial matter:
Giant halos (R.V. Gentry)

SHE?
Search for spontaneous fission of SHE: big proportional counters of fission fragments (JINR, Dubna, 1970)
3He-neutron multiplicity counters
(Solotvino mine, USSR, 1975)
The charge spectrum of very heavy cosmic ray nuclei

By P. H. Fowler, F.R.S.
Royal Society Research Professor at the University of Bristol
and R. A. Adams, V. G. Cowen and J. M. Kidd*
H. H. Wills Physics Laboratory, University of Bristol

(Paper based on a part of a Review Lecture delivered 9 February 1967—Received 10 April 1967)

\[Z \approx 26 \]

\[Z = 90 \pm 4 \]
Search for Z=108, SF of natural Eka-Os by detection of fission neutrons

1 SF-event per year ($T_{1/2}=10^9$ yrs) corresponds to concentration:

$$\text{EkaOs/Os} = 5 \times 10^{-15} \text{g/g}$$

(or 10^{-22} g/g in the terrestrial matter, or 10^{-16} of U)
Search for a superheavy nuclide with A = 292 and neutron-deficient thorium isotopes in natural thorianite

VERA Laboratory, Fakultät für Physik, Universität Wien, Währinger Straße 17, A-1090 Wien, Austria
Search for SHE in nature

Several very exciting signals and indications have been found...

but

there are no well confirmed and quite clear findings
Nucleosynthesis by neutron capture

\[n_0 \text{ is the neutron flux} \]
\[\tau_{n}^{\text{cap}} = \frac{1}{n_0 \times \sigma(n,\gamma)} \]

\((Z,A) \rightarrow (Z,A+1)\) if \(T_{1/2} > \tau_{n}^{\text{cap}}\)

nuclear reactor: \(\tau_{n}^{\text{cap}} \sim 1\) year
nuclear explosion: \(\tau_{n}^{\text{cap}} \sim 1\) μs

\[
\frac{dN_{ZA}}{dt} = N_{ZA-1} n_0 \sigma_{ZA-1}^{\gamma} - N_{ZA} n_0 \sigma_{ZA}^{\gamma} - N_{ZA} \frac{\ln 2}{T_{ZA}^{\beta}} - N_{ZA} \frac{\ln 2}{T_{ZA}^{\alpha}} - N_{ZA} \frac{\ln 2}{T_{Z-1A}^{f_{\text{fis}}}} + N_{Z-1A} \frac{\ln 2}{T_{Z-1A}^{\beta}} + N_{Z+2A+4} \frac{\ln 2}{T_{Z+2A+4}^{\alpha}}
\]

neutron fluence: \(10^{24} \text{ n/cm}^2\)

explosion \((10^{30} \text{ n/cm}^2 \cdot \text{s} \times 1\) μs\)

reactor: \(10^{16} \text{ n/cm}^2 \cdot \text{s} \times 10^8\) (3 years)

Fermium Gap
\(T_{1/2}^{f_{\text{fis}} < 1}\) s

Island of Stability
Multiple nuclear explosions
(proposed first by H.W. Meldner, PRL 28, 1972)
Edward Teller: Technically it is quite possible

Probability for formation of element 112 increases by 90 orders of magnitude!
Next generation of pulsed reactors: We need factor 1000 only!

same neutron fluence: 10^{24} n/cm^2

pulsed reactors:
$N \times (1 \text{ ms} + 1 \text{s})$

existing pulsed reactors
$10^{16} \text{ n/cm}^2, N=10^8$ (3 years)

future pulsed reactor:
$10^{20} \text{ n/cm}^2, N=10^4$ (3 hours)
Formation of SH elements in astrophysical r-process

Strong neutron fluxes are expected to be generated by neutrino-driven proto-neutron star winds which follow core-collapse supernova explosions or by the mergers of neutron stars.

How large is the neutron flux?

Idea: supernova is a typical old star

Abundance of elements in the Universe
Formation of SH elements in astrophysical r-process

In the course of neutron irradiation initial Th and U material are depleted transforming to heavier elements and going to fission, while more abundant Pb and lighter stable elements enrich Th and U.

Unknown total neutron fluence is adjusted in such a way that the ratios Th/Pb and U/Pb keep their experimental values.
Summary

- Elements **119 and 120** can be really synthesized in the Ti and/or Cr fusion reactions with cross sections of about 0.05 - 0.02 pb. It is possible that they are the heaviest SH elements with $T_{1/2} > 1 \mu s$?

- New methods (multi-nucleon transfers, neutron capture, ?) need to be found for synthesis of neutron enriched long-living SH nuclei located along the beta-stability line.

- A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced with the use of pulsed nuclear reactors of the next generation (factor 1000 is needed).

- Production of long-living SH nuclei in the astrophysical r-process looks not so much pessimistic: relative yield of SH / Pb may be about 10^{-12}. The question: How long is their half-lives?