New prospects in synthesis and study of superheavy nuclei

- Superheavy dreams of Walter Greiner
- Epoch of "cold" and "hot" fusion reactions (100 < Z <= 118)
- Multi-nucleon transfer reactions
- Non-accelerative SHE production
- Summary

Valery Zagrebaev and Walter Greiner

for XIII WONP – VII NURT, February 08, 2011, Havana, Cuba

FIAS (Frankfurt)

Mendeleev's Table 140 years ago

Optime Builden Inducer matig E, censentally no sincerete. Ties te= 10 ?= 100 U= 51 No=94 Jac 18: G=52 Au=16 10=16 Auss' Rd=1094 84-192,4 Se= 55 Ros= 1094 3 - 141. No-B-54. R=1064 (3499. H=1. - 39 Ca=634 . 4y=101. 14= 200 1=8 - 1= 39 Canbay - 4 = 111 As= 14=34 - 4 = 21 Readist B= 112. 20
 R=11
 M=274
 I=68
 M=116
 Sa=175."

 C=12
 S=28
 I=70
 Sa=116
 Sa=175."

 S=14
 P=31
 Sa=75
 Sa=120
 Si=210."

 Sa=14
 P=31
 Sa=75
 Sa=120
 Si=210."

 Oa16
 I=32
 Sa=70
 Sa=120."
 Si=210."

 Sa=16
 I=32
 Sa=70
 Sa=120."
 Sa=10."

 Sa=16
 I=32."
 Sa=70."
 Sa=120."
 Sa=10."

 Sa=16
 I=32."
 Sa=32."
 Sa=32."
 Sa=15."
 Sa=16."

 Sa=17
 Sa=23."
 Ria 33."
 Ria 33."
 Sa=17."
 Sa=20."

 Sa=10
 Sa=32."
 Ria 33."
 Sa=17."
 Sa=20."

 Sa=10
 Sa=32."
 Ria 33."
 Sa=17."
 Sa=20."

 Sa=10
 Sa=32."
 Ria 33."
 Sa=17."
 Sa=20."

 Sa=10
 Sa=10."
 Sa=10."
 Sa=10."
 Sa=10."
 ?= \$5 Gall 2 Gast ! da= 94 94 60? &= 95 ? Da= 75 (86 - 118 ? Essai Vune Système Des éléments Vaprès lies poils abomiques et orionaules forchions chimiques fra d'alla della de la standard de la source de la sou Bo g vicemay. JA # 6.9. Inany deaminences bronn ton very un de manil, sources markeleto neroo! and make maker to the to be to super by -

Ancient Nuclear Map and dreams of Walter Greiner

Mendeleev's Table

гон	E		группы элементов																							
nep	a.	а	1	õ	а	п	б	а	Ш б	a	IV	б	8	V	б	a	VI	б	а	VII	ő	a	VIII	б	atoment south	
1	1	Посоциен Н 1,00794 Пулітари	1 1s'																			Izmii He 4.0026 Helium	2 1s ¹		Hostopia H. 15 ¹ 1,00794	
2	п	Janual Li 6541 Libian	3 2s'		Be Re Reliant	4 28 ³		B B BARE Boron	5 2p	Vesepest C EZ.011 Carbon	6 2p'		Asar N 14,00674 Nitrogan	7 2p'		Kacupat O 15,9994 Oxygen	8 2p*		ibup F 18,996403 Fhantae	9 2p'		Ne Ne Nem	10 2p*		- 189801 - 1898	ноги нисся Ленина кнефи.Менин
3	ш	Harpeti Na 22,98976 Sediam	11 3s'		Marreall Mg 34,3450 Magneter	12 3s ¹		Alternation Al 26,981539 Alternation	" 13 3p'	Reconstit Si 25,0055 Nilons	14 3p ³		ebecdesp P 36,973762 Phosphores	15 3p'		Cape S 32,066 Salfar	16 3p ⁴		X.up Cl MAS27 Chirine	17 3p'		Артин Аг эконя Агран	18 3p ^s			
	IV	Kanpfi K J9,0983 Polasilar	19 45		Ca dates	20 4s ²			21 Concret 3d'4s' Sc		22 3d'4s'	Titore Ti 47,88 Titores		23 3d'4s'	V NA.5415		24 3d'4s'	Cr		25 3d'4s'	Mn		26 3d'4s'	Fe	27 3d'4s ¹ Co	28 3d'4s ¹ Ni skatter ticket
2.40	v		29 3d"4	Man Cu 61,546 Cieper		30 3d"4s'		Gallian	31 4p	Germani	32 4p'		As As TANZIST Anumic	33 4p'		Centr Se 78,90 Seleniari	34 ×.	75238	Br Br 19,964 Broniae	35 4p'		Kymmu Kryptai	36 4p*		— s-элементы — p-элементы	
5	VI	Pythcasil Rb MLASTS Robidum	37 55		Cipanani Sr 87.42 Streetian	38 5s'			39 Hrepad 4d'5s' Y		40 ⁻¹⁰ 4d ² 5s ³	Zr 91.224		41 4d'5s'	Nb Nb		42 May	Mo		43 4d'5s	Tc		44 40'5s'	Ru Hild?	45 Mass 4d'5s' Rh Holoss	46 Hannah 4d" Pd Hanna Puttation
	vii		47 4d"54	Ag		48 4d~5s1	Cd Cd	In In Inc. State	49 5p ²	Sn III.710 The	50 5p'		Cypana Sb 131,787 Antimetry	51 5p'		Tesasp Te 137,66 Telleram	52 5p*		Fier I 136,96447 Italine	53 5p'		Xe Xe Xeas	54 5p°		🥅 d-элементы 🥅 f-элементы	
	vm	CS	55 65		Ba Ba Li7,327 Itarian	56 68			57 Januar 5d'65 La		72 5d'6s	Hf 128,40 Flatten		73 5d'68	Та		74 ⁿ 50'6s	W INIJAA Tangatan		75 5d'6s	Re Inc.inf		76 5d'6s'	Ornell OS 199,20 Osmuti	77 Necasi 5d'6s' Ir 191222	78 Sd'6s' Pt rissas
0	IX		79 5d"6s	Au		80 5d*6s'	Pryst. Hg 100.59 Moreary	Tannet TI 266,3833 Thellium	81 6p'	Pb 287.2 Load	82 6p ¹		Becarys Bi 208,99837 Birrouth	83 6p'		Po (1991) Polonian	84 6p		Areat At (210) Areating	85 6p ¹		PLEIN Rn [122] Roden	86 6p [*]			
_	x	Approach Fr 1224 Francisco	87 75	4,073	Passii Ra 236,025 Eallers	88 78 ¹			89 Arrest		104 Pro	Rf		105	,2yGeneti Db (242) Dubusen		106 °	Sg		107	Boperie Bh (267) Bolerisen		108	Kaccuti HS (209) Huminet	109 ^{Meltrarpati} Mt J2581 Meltrarpati	110 ^{20pearrante} Ds 1269 Thermodulian
1	xı		111	Rg	112		1	113		114		115			116		117		118							
Лантаноиды Lanthanides																										
Ce Lander	Lepeli Ce 41'54' Later		Tipuseonese Pr 4f ^e 140,98765 Proceedymine		Heathan II Nd 41° II 14424 II Newdomiaen II		Pm 13451 Present	41 ⁴	Castapuil Sm 4° Smann	E H U	Eaponail Eu 40' 151.968 Darquen		Faasmuuli Gd 415d 197.25 Cathlesian		Tepon Tb 158,925 Techan	A1" 34	Jucn Dy 142,58	Deceporation Dy 41 ^{ee} Dyspensare		Formaterii H0 41 ²¹ 164,93932 Dolman		Dpfuil Er 4r ^{at} Istrae		Tymil Tm Last, 9542 Distant	41 ^{co} 172,84 172,84 172,84 172,84	Astronali Lu 41°54 174,967 Lucenan
Акт	нои,	ды	Actini	des			-												-							
Topei Th 202,450 Therese	Topoli Th 7s'6d Increas		Протактиний Уран Разгод 201,43988 Роциницан Роциницан		Vpan U 505 238,8289 Uranas	st'hd' Np st an Nation		5060 50	i Hayronnii 6d' Pu sr pan Pononen		Америций Ат 51° ряц Алигения		Kapali K Cm sried I pan		Берка Bk paŋ Berketa	anii K Cist (Kampopunii Cf se ^m (291) Collimates		Dinurciinnii Es st ^a Usij		Фермий Fm sr ^{at} [257] Ганиан		Menune Md (25%) Mondele	sensili Hošenili Sf ¹³ NO st ¹⁴ (269) Notetaan	Joypenenii Lr 51°6d' [367] Lawrenne

Synthesis of new elements (history)

Synthesis of superheavy elements (experiment)

Synthesis of superheavy elements (experiment)

Target made of ²⁴⁹Cf (half-life is 350 years)

Detectors for SH nucleus recoil and products of its decay

Significance of Theory

Which nuclei are to be fused ?

«cold» synthesis: ²⁰⁸Pb + ⁶⁴Ni, ⁷⁰Zn, ... → ²⁷²110, ²⁷⁸112, ... (GSI, Germany)
«hot» synthesis: ²³⁸U, ²⁴⁴Pu, ²⁴⁸Cm, ²⁴⁹Cf + ⁴⁸Ca → ²⁸⁶112, ²⁹²114, ²⁹⁶116, ²⁹⁷118 (Dubna)
Symmetric combinations: ¹⁴⁸Nd + ¹⁵⁴Sm → ³⁰²122 ? Radioactive beams of ¹³²Sn, etc. ?

Superheavy Elements (Island of Stability)

Great progress in synthesis of superheavy nuclei

Beyond ⁴⁸Ca: Pursuit of 120

Radioactive Ion Beams for production of neutron rich superheavy nuclei ?

Multi-nucleon transfer reactions in low-energy heavy ion collisions

Simulation of experiment and cross sections

Dynamics: 10^{6} tested events (trajectories), Statistical model: 10^{-6} (3n), 10^{-7} (4n) survival probability cross sections up to 0.1 pb can be calculated

Time-dependent Driving Potential

 $V_{\text{diabat}}(R,\beta_1,\beta_2,\alpha,...) = V_{12}^{\text{folding}}(Z_1,N_1,Z_2,N_2;R,\beta_1,\beta_2,...) + M(A_1) + M(A_2) - M(\text{Proj}) - M(\text{Targ})$

 $V_{\text{adiabat}}(\mathsf{R},\beta_1,\beta_2,\eta,...) = \mathsf{M}_{\mathsf{TCSM}}(\mathsf{R},\beta_1,\beta_2,\eta,...) - \mathsf{M}(\mathsf{Proj}) - \mathsf{M}(\mathsf{Targ})$

Time -dependent driving potential has to be used $V(t) = V_{\text{diab}}(\xi) \cdot \exp(-\frac{t_{\text{int}}}{\tau_{\text{relax}}}) + V_{\text{adiab}}(\xi) \cdot [1 - \exp(-\frac{t_{\text{int}}}{\tau_{\text{relax}}})]$ $\tau_{\text{relax}} \sim 10^{-21} \text{ s}$ the same degrees of freedom ($\xi = R, \theta, \phi_1, \phi_2, \beta_1, \beta_2, \eta_Z, \eta_N$) ! All forces, $F_i(t) = -\frac{\partial V}{\partial \xi_i}$, are quite smooth

Time-dependent Driving Potential

Nucleon Exchange

(L. Moretto, 1974) (L. Moretto, 1974) Distribution function $\varphi(A_1, t) \rightarrow \text{Master equation} \quad \frac{\partial \varphi}{\partial t} = \sum_{A_1'=A_1\pm 1} \lambda(A_1' \rightarrow A_1) \cdot \varphi(A_1') - \lambda(A_1 \rightarrow A_1') \cdot \varphi(A_1)$ $\frac{\partial \varphi}{\partial t} = -\frac{\partial}{\partial A_1} \left(D^{(1)} \varphi \right) + \frac{\partial^2}{\partial A_1^2} \left(D^{(2)} \varphi \right) \quad \text{Fokker - Planck}_{(W. \text{ Nörenberg, 1974})}$ $\eta = \frac{A_1 - A_2}{A_{CN}} = \frac{A_1 - (A_{CN} - A_1)}{A_{CN}} = \frac{2A_1 - A_{CN}}{A_{CN}}$ $\frac{dA_1}{dt} = D^{(1)} + \sqrt{D^{(2)}} \Gamma(t) \quad \text{Langevin type eq.}$ $\frac{d\eta}{dt} = \frac{2}{A_{\text{ev}}} D_A^{(1)} + \frac{2}{A_{\text{ev}}} \sqrt{D_A^{(2)}} \Gamma(t)$ at A' = A ± 1 $D^{(1)} = \lambda(A_1 \rightarrow A_1 + 1) - \lambda(A_1 \rightarrow A_1 - 1)$ $D^{(2)} = \frac{1}{2} [\lambda(A_1 \rightarrow A_1 + 1) + \lambda(A_1 \rightarrow A_1 - 1)]$ $\lambda^{(\pm)} = \lambda_0 \sqrt{\frac{\rho(A\pm 1)}{\rho(A)}} P_{\text{tr}}(R; A \to A\pm 1), \quad \rho \sim exp(2\sqrt{aE^*}), \quad E^* = E_{\text{c.m.}} - V(R, \beta_1, \beta_2, \eta)$ transition probability

$$\begin{array}{c} \sum_{\substack{A_1 \\ A_2 \\ N_2 \rightarrow N_2 + 1 \\ N_2 \rightarrow N_2 + 1 \end{array}} \sum_{\substack{R_1 \rightarrow R_2 + 1 \\ N_2 \rightarrow N_2 + 1 \end{array}} \eta_{R} = \frac{Z_1 - Z_2}{Z_1 + Z_2} & D_{N,Z}^{(1)} = \lambda_{N,Z} (A \rightarrow A + 1) - \lambda_{N,Z} (A \rightarrow A - 1) \\ D_{N,Z}^{(2)} = \frac{1}{2} [\lambda_{N,Z} (A \rightarrow A + 1) + \lambda_{N,Z} (A \rightarrow A - 1)] \\ \lambda_{N,Z}^{(\pm)} = \lambda_{N,Z}^{0} \sqrt{\frac{\rho(A \pm 1)}{\rho(A)}} P_{tr}(R; A \rightarrow A \pm 1) \end{array}$$

 $\frac{dR}{dR} = \frac{p_R}{p_R}$ Variables: {R, θ , φ_1 , φ_2 , β_1 , β_2 , η_7 , η_N } $\frac{\frac{d\theta}{d\theta}}{\frac{d\theta}{dt}} = \frac{\frac{\mu_R}{\mu_R}}{\frac{\ell}{\mu_R R^2}}$ Most uncertain parameters: μ_0, γ_0 - nuclear viscosity and friction, λ_Z^0 , λ_N^0 - nucleon transfer rate $\frac{d\varphi_1}{dt} = \frac{L_1}{\mathfrak{I}_1}, \ \frac{d\varphi_2}{dt} = \frac{L_2}{\mathfrak{I}_2}$ $\eta = \frac{A_{1} - A_{2}}{A_{1} + A_{2}}$ $\eta_{Z} = \frac{Z_{1} - Z_{2}}{Z_{1} + Z_{2}}$ φ1 $\frac{d\beta_1}{dt} = \frac{p_{\beta 1}}{\mu_{\beta 1}}$ R A₁ μ_{B1} b θ. $\frac{d\beta_2}{dt} = \frac{p_{\beta 2}}{\mu_{\beta 2}}$ $\eta_{N} = \frac{N_{1} - N_{2}}{N_{1} + N_{2}}$ $\langle \varphi_2 \rangle$ Α2 $\frac{d\eta_{z}}{dt} = \frac{2}{Z_{\rm CN}} D_{\rm Z}^{(1)} + \frac{2}{Z_{\rm CN}} \sqrt{D_{\rm Z}^{(2)}} \Gamma_{\rm Z} (t)$ $\lambda_{\mathbf{Z}}^{\mathbf{0}} = \lambda_{\mathbf{N}}^{\mathbf{0}} = \frac{\lambda_{\mathbf{Q}}^{\mathbf{0}}}{2}$ $\frac{d\eta_{\rm N}}{dt} = \frac{2}{N_{\rm CN}} D_{\rm N}^{(1)} + \frac{2}{N_{\rm CN}} \sqrt{D_{\rm N}^{(2)}} \Gamma_{\rm N} (t)$ $\frac{dp_R}{dt} = -\frac{\partial V}{\partial R} + \frac{\ell^2}{\mu_R R^3} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right)\frac{\partial \mu_R}{\partial R} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2}\frac{\partial \mu_{\beta_1}}{\partial R} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2}\frac{\partial \mu_{\beta_2}}{\partial R} - \gamma_R \frac{p_R}{\mu_R} + \sqrt{\gamma_R T}\Gamma_R(t)$ $\frac{d\ell}{dt} = -\frac{\partial V}{\partial \vartheta} - \gamma_{\text{tang}} \left(\frac{\ell}{\mu_{R}R} - \frac{L_{1}}{\Im_{1}}a_{1} - \frac{L_{2}}{\Im_{2}}a_{2} \right) R + \sqrt{\gamma_{\text{tang}}T}\Gamma_{\text{tang}}(t)$ $\frac{dL_1}{dt} = -\frac{\partial V}{\partial \varphi_1} + \gamma_{\text{tang}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_1 - \frac{a_1}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dL_2}{dt} = -\frac{\partial V}{\partial \varphi_2} + \gamma_{\text{tan}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_2 - \frac{a_2}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dp_{\beta_1}}{dt} = -\frac{\partial V}{\partial \beta_1} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_1} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_1} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_1} - \gamma_\beta \frac{p_{\beta_1}}{\mu_{\beta_1}} + \sqrt{\gamma_{\beta_1} T} \Gamma_{\beta_1}(t)$ $\frac{dp_{\beta_2}}{dt} = -\frac{\partial V}{\partial \beta_2} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_2} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_2} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_2} - \gamma_\beta \frac{p_{\beta_2}}{\mu_{\beta_2}} + \sqrt{\gamma_{\beta_2} T} \Gamma_{\beta_2}(t)$

Good agreement with experiment: e.g. ⁴⁸Ca + ²⁴⁸Cm

Transfer reactions in damped collision of very heavy nuclei ?

Most probable way of evolution of the giant nuclear system

238U + 248Cm. Primary fragments

238U + 248Cm. Excitation energies and survival probability

Isotopic yield of SHE in collisions of heavy actinide nuclei

How much is a role of the shell effects in damped collisions ? ¹⁶⁰Gd + ¹⁸⁶W

(proposal for a new experiment)

Non-accelerative production of superheavy nuclei

Nucleogenesis under the influence of neutron flux

time of neutron capture

$$\tau_n^{cap} = \frac{1}{n_0^x \sigma(n,\gamma)} \qquad \begin{array}{l} n_0 \text{ is the neutron flux } (\frac{1}{cm^2 \cdot sec}), \\ \sigma(n,\gamma) \text{ is the n-capture cross section } (\sim 1 \text{ barn} = 10^{-24} \text{ cm}^2, \text{ E}_n = 0.5 \text{ MeV}) \end{array}$$

the shift to the right stops

when
$$\mathbf{T}_{1/2}(\mathbf{Z}, \mathbf{A}) < \tau_n^{cap}$$

 $n_0 (reactor) < 10^{19} \frac{1}{cm^2 \cdot sec}$, $\tau_n^{cap} > 10^5 \sec (1 \text{ day})$
 $n_0 (explosion) \sim 10^{30} \frac{1}{cm^2 \cdot sec}$, $\tau_n^{cap} \sim 1 \,\mu s$

Nucleogenesis in reactors and in nuclear explosion

Rapid neutron capture in nuclear explosion

Multiple nuclear explosions

Pulsed reactors: Bypassing the gaps of instability

New generation of Pulsed Reactors ?

Summary

- Element 120 is reachable in the Ti and/or Cr fusion reactions at the level of 0.02 pb
- Multi-nucleon transfer reactions are to be used for synthesis of neutron rich long living SH nuclei
- A macroscopic amount of the long-living SH nuclei located at the island of stability may be really produced in the multiple (rather "soft") nuclear explosions
- This goal could be also reached by using the pulsed nuclear reactors of next generation

Problems

- Where is the island of stability ? What is the most stable SH element to find it in Nature ?
- How much is the shell-effect enhancement in transfer reactions?
- How extensive is the Fm gap ? What is the nearest "blue" (beta-decayed) Fm isotope ? How deep (short-living) is the gap in the region of Z~108, A~270 ?
- Is it possible to construct desired pulsed reactor to overcome the both gaps ? Or "soft" multiple explosions are still cheaper?