Sub-barrier fusion of weakly bound nuclei: Strong enhancement due to sequential fusion mechanism

- History
- Role of neutrons in fusion reactions
- Sequential fusion mechanism
- Huge enhancement in fusion of weakly bound nuclei
- Summary

Valery Zagrebaev, JINR, Dubna

History

Theory:

- Takigawa and Sagawa, Phys.Lett. 1991: ¹¹Li+²⁰⁸Pb, "halo, soft dipole mode" enhancement
- Hussein et al, Phys.Rev. 1992: ¹¹Li+²⁰⁸Pb, "break-up" suppression
- Dasso and Vitturi, Phys.Rev. 1994: ¹¹Li+²⁰⁸Pb, "both" enhancement
- Hagino et al., Phys.Rev. 2000: ¹¹Be+²⁰⁸Pb, "break-up" enhancement
- Nakatsukasa et al., Fusion-2006: fusion suppression for neutron-halo nuclei

Experiment:

- Fomichev *et al.*, Z.Phys. 1995: ⁶He+²⁰⁹Bi, enhancement?
- Kolata *et al.*, Phys.Rev. Lett. 1998: ⁶He+²⁰⁹Bi, enhancement !
- Trotta, Sida, Alamanos et al., Phys.Rev.Lett. 2000: ⁶He+²³⁸U, enhancement !
- Raabe et al., Nature 2004: ⁶He+²³⁸U, no fusion enhancement, only 2n-transfer
- Di Pietro et al., Phys. Rev. 2004: ⁶He+⁶⁴Zn, no enhancement

Role of internal degrees of freedom

Distance between nuclear surfaces and, thus, the **Coulomb barrier** depend on vibrations and rotation: $\mathbf{B} = \mathbf{B}(\beta_2, \beta_3), \ \mathbf{B} = \mathbf{B}(\theta, \varphi)$ - multidimensional barriers.

Instead of one fixed barrier \mathbf{B} we have a "barrier distribution function" $f(\mathbf{B})$.

Barrier penetrability is $T(E, \ell) = \int f(B)P_0(B; E, \ell) dB$.

→ sub-barrier fusion enhancement

What is a role of neutrons in fusion process ?

Role of neutrons in sub-barrier fusion ?

N. Rowley, I.J. Thompson, and M.A. Nagarajan, PL, 1992 CC simulations:

 \rightarrow Q_n <0 - broad barrier distribution, necking \rightarrow Q_n >0 - "anti- necking" conditions

Ning Wang, Xizhen Wu, and Zhuxia Li, PRC, 2003 QMD calculations:

 \rightarrow neutron excess plays a dominant role

More neutrons more probable i ion $\sigma_{fus}(48)$ a) ion $\sigma_{fus}(2a+48)$ so 1 $\sigma_{fus}(2a+48)$ so 1 $Ca^{+48}Ca^{-1}$ so 1 $Ca^{+96}Zr^{-1}$ so 1 $Ca^{+96}Zr^{-1}$ so 1 $Ca^{+96}Zr^{-1}$ so 1

Neutron excess itself does not help nuclei to fuse !

Lack of theory for fusion of some nuclei

Solution of 3-body time-dependent Schrödinger equation

Wave functions of valence neutrons follow the two-center quasi-molecular states and **spread over the volumes of both nuclei** rather fast, before nuclei come in contact and even **before** they overcome the Coulomb barrier !

Gain due to positive Q-value of neutron rearrangement

In most combinations neutrons may be transferred only with negative Q-values

Nevertheless there are combinations with a chance for positive Q-value neutron transfer !

This gain in energy may go into the relative motion energy 1

 $E_{c.m.} + M(A) + M(B) = E'_{c.m.} + M(A-1) + M(B+1) = const$ if [M(A-1)+M(B+1)] < [M(A)+M(B)] then $E'_{c.m.} > E_{c.m.}$

Sequential fusion process

$$\sigma_{\text{fusion}}(\mathsf{E}) = \frac{\pi}{k^2} \sum (2\ell+1) \cdot \mathsf{T}(\ell,\mathsf{E}) \longrightarrow \mathsf{T}(\ell,\mathsf{E}) = \int_{0}^{\infty} \mathsf{f}(\mathsf{B}) \mathsf{P}_{\mathsf{o}}(\mathsf{B};\ell,\mathsf{E}) \mathsf{d}\mathsf{B}$$

$$T(\ell, E) = \int_{0}^{\infty} f(B) \int_{-E}^{Q_{0}(k)} \frac{1}{N} \left[\delta(Q) + \sum_{k \ge 1} \alpha_{k}(E; \ell, Q) \right] P_{0}(B; \ell, E+Q) dQ dB$$

 $Q_{0}(k)$ is the Q-value of g.s. transfer probability for transfer of k neutrons: $\alpha_{k}(E; \ell, Q) = N_{k} e^{-C[Q-Q_{0}pt]^{2}} e^{-2\gamma[D(E, \ell) - D_{0}]}$ $D(E, \ell)$ is the distance of closest approach, and $D_{0} = d_{0}(A^{1/3} + B^{1/3}), \quad d_{0} \approx 1.4 \text{ fm}$ $\gamma = \gamma(\epsilon_{1}) + \gamma(\epsilon_{2}) + ... + \gamma(\epsilon_{k}), \quad \gamma(\epsilon) = \sqrt{2\mu\epsilon/\hbar^{2}}$

Fusion enhancement for stable neutron rich nuclei

Idea of "sequential fusion" mechanism with intermediate neutron rearrangement seems to work !

Test for the "neutron rearrangement" mechanism in sub-barrier fusion reactions

Stable nuclei: ${}^{40}Ca + {}^{124}Sn \rightarrow {}^{44}Ca + {}^{120}Sn + 9.5 \text{ MeV} > \rightarrow {}^{164}Yb$ $^{48}Ca + ^{116}Sn \rightarrow < all Q_n^{trans} < 0 > \rightarrow ^{164}Yb$

> $^{14}C + ^{40}Ca \rightarrow < ^{12}C + ^{42}Ca + 6.7 \text{ MeV} > \rightarrow ^{54}Fe$ $^{12}C + ^{42}Ca \rightarrow <$ all $Q_n^{\text{trans}} < 0 > \rightarrow ^{54}Fe$

Weakly bound nuclei: $^{6}\text{He} + ^{206}\text{Pb} \rightarrow < ^{4}\text{He} + ^{208}\text{Pb} + 13.1 \text{ MeV} > \rightarrow ^{212}\text{Po}$ ⁴He + ²⁰⁸Pb \rightarrow < all Q_{p}^{trans} < 0 > \rightarrow ²¹²Po

⁶He + ²⁰⁶Pb

Time-dependent analysis of ⁶**He** + ²⁰⁶**Pb collision**

⁶He

distance

Schematic picture for sequential fusion of 6He

Huge enhancement in deep sub-barrier fusion of weakly bound nuclei

Raabe et al., Nature, 2004 ⁶He+²³⁸U: No fusion enhancement !

Time-dependent Scrodinger equation

$$i\hbar \frac{\partial \Psi}{\partial t} = \left[-\frac{\hbar^2}{2m_3} \Delta_{\mathbf{r}} + V(\mathbf{r}, \mathbf{R}(t)) \right] \Psi(\mathbf{r}, t, \mathbf{R}(t))$$

$$i\hbar \frac{\partial \Psi}{\partial t} = \left[-\frac{\hbar^2}{2m_3} \Delta_{\mathbf{r}} - \frac{\hbar^2}{2M} \frac{\partial^2}{\partial \mathbf{R}^2} + V_{12}(\mathbf{R}) + V_n(\mathbf{r}, \mathbf{R}) \right] \Psi(\mathbf{r}, \mathbf{R}, t)$$

$$T(t,E) = \int_{-\infty}^{R_B} dR \int d^3 \mathbf{r} |\Psi(\mathbf{r},R,t)|^2$$

Two mechanisms of fusion enhancement due to neutron exchange

single particle levels in the ${}^{96}Zr + {}^{40}Ca$ system

$$V_{\alpha\beta}(R) = V_{12}(R) + \varepsilon_{\beta}(R) - \varepsilon_{\alpha}(\infty)$$

Nucleosynthesis

some chains :

 ${}^{1}\mathrm{H}(\mathbf{n},\gamma){}^{2}\mathrm{H}(\mathbf{n},\gamma){}^{3}\mathrm{H}(\mathbf{d},\mathbf{n}){}^{4}\mathrm{He}({}^{3}\mathrm{H},\gamma){}^{7}\mathrm{Li}(\mathbf{n},\gamma){}^{8}\mathrm{Li},$

 ${}^{8}\text{Li}({}^{4}\text{He,n}){}^{11}\text{B}(n,g){}^{12}\text{B}(\beta\,\bar{\nu}){}^{12}\text{C}(n,\gamma){}^{13}\text{C}(n,\gamma){}^{14}\text{C}$

 $^{14}C(^{4}He,\gamma)^{18}O$ plays the major role in heavy element production (Malanay and Fowler, Astroph. Journal, 1988)

Conclusion

- "Sequential fusion" mechanism plays an important role
- Rearrangement of neutrons with positive Q-value significantly increases sub-barrier fusion probability
- Huge enhancement in fusion of weakly bound nuclei is revealed
- New experiments on sub-barrier fusion of light weakly bound nuclei - like ¹²C(⁶He,nγ)¹⁷O - are to be performed
- Scenario of primordial nucleosynthesis may be revised