True ternary fission of superheavy nuclei

- Clusterization and shape isomeric states of heavy nuclei
- Ternary fission of superheavy nuclei
- Ternary quasi-fission of giant nuclear systems
- Summary and hint at experiments

Valery Zagrebaev, JINR, Dubna
for Seminar on Fission VII, Het Pand, 20 May 2010

LP accompanied fission and True ternary fission

Yields of ternary particles in the ($n_{\text {th }} f$) reactions with thermal neutrons (relative to binary fission).
F. Gönnenwein et al., Seminar on Fission: Pont D'Oye IV

True ternary fission:

"a simultaneous decay of a heavy nucleus into three fragments of not very different mass".
[C. Wagemans, in The Nuclear Fission Process]
Such decays of low excited heavy nuclei
have not yet been unambiguously observed.

History:
W. J. Swiatecki, Int.Conf.on Peaceful Uses of At.Energy, Geneva, 1958. H. Diehl and W. Greiner, Nucl. Phys. A 229, 29 (1974).
A. R. Degheidy and J. A. Maruhn, Z. Phys. A 290, 205 (1979).
H. Schulheis and R. Schulheis, Phys. Lett. B 49, 423 (1974).
X. Wu, J. Maruhn, and W. Greiner, J. Phys. G 10, 645 (1984).

oblate (triangle)

prolate

Two-Center Shell Model

Clusterization and shape isomeric states of heavy nuclei

3-body clusterization

$R \geqq R\left(a_{1}\right)+2 R\left(a_{3}\right)+R\left(a_{2}\right)$

\rightarrow 3-body clusterization

\rightarrow heavy ternary fission

Ternary fission of actinide nuclei is impossible

Restrictions: $\mathrm{a}_{1}=\mathrm{a}_{2}$ and, thus, $\mathrm{A}_{1}=\mathrm{A}_{2}$

$$
\delta_{1}=\delta_{2}=\delta_{3}=\delta
$$

True ternary fission is possible for superheavy nuclei !

Giant nuclear systems: how long is reaction time?

Giant nuclear systems: transfer reactions and production of SHE

Production of neutron-rich SHE in low-energy collisions of heavy actinide nuclei

Ternary Quasi-Fission of giant nuclear systems

Summary

1. There are only two real heavy nuclear clusters, tin and lead.
2. Actinide nuclei have insufficient mass to split onto three heavy clusters.
3. Superheavy nuclei have a real chance to split onto tin + something + tin.
4. Giant nuclear molecules may decay onto lead + something + lead.

Two (rather simple) experiments: (1) $\mathbf{N i}+\mathbf{U} \rightarrow \mathbf{S n}+\mathbf{C a}+\mathbf{S n}$ (true ternary fission)
(2) $\mathbf{U}+\mathbf{U} \rightarrow \mathbf{P b}+\mathbf{C a}+\mathbf{P b}$ (true ternary quasi-fission)

Co-authors: Alexander Karpov (Dubna) and Walter Greiner (Frankfurt): PRC 81, 044608 (2010)

