True ternary fission of superheavy nuclei

- Clusterization and shape isomeric states of heavy nuclei
- Ternary fission of superheavy nuclei
- Ternary quasi-fission of giant nuclear systems
- Summary and hint at experiments

Valery Zagrebaev, JINR, Dubna

for Seminar on Fission VII, Het Pand, 20 May 2010

LP accompanied fission and True ternary fission

Yields of **ternary particles** in the (n_{th}, f) reactions with thermal neutrons (relative to binary fission). F. Gönnenwein et al., *Seminar on Fission: Pont D'Oye IV*

True ternary fission:

"a simultaneous decay of a heavy nucleus into three fragments of not very different mass". [C. Wagemans, in *The Nuclear Fission Process*] Such decays of low excited heavy nuclei have not yet been unambiguously observed.

History:

W. J. Swiatecki, Int.Conf.on Peaceful Uses of At.Energy, Geneva, 1958.
H. Diehl and W. Greiner, Nucl. Phys. A 229, 29 (1974).
A. R. Degheidy and J. A. Maruhn, Z. Phys. A 290, 205 (1979).

- H. Schulheis and R. Schulheis, Phys. Lett. B 49, 423 (1974).
- X. Wu, J. Maruhn, and W. Greiner, J. Phys. G 10, 645 (1984).

prolate

Two-Center Shell Model

Clusterization and shape isomeric states of heavy nuclei

Ternary fission of actinide nuclei is impossible

True ternary fission is possible for superheavy nuclei !

Giant nuclear systems: how long is reaction time?

Giant nuclear systems: transfer reactions and production of SHE

Production of neutron-rich SHE in low-energy collisions of heavy actinide nuclei

Ternary Quasi-Fission of giant nuclear systems

Summary

- 1. There are only two real heavy nuclear clusters, tin and lead.
- 2. Actinide nuclei have insufficient mass to split onto three heavy clusters.
- 3. Superheavy nuclei have a real chance to split onto tin + something + tin.
- 4. Giant nuclear molecules may decay onto lead + something + lead.

Two (rather simple) experiments: (1) $Ni + U \rightarrow Sn + Ca + Sn$ (true ternary fission) (2) $U + U \rightarrow Pb + Ca + Pb$ (true ternary quasi-fission)

Co-authors: Alexander Karpov (Dubna) and Walter Greiner (Frankfurt): PRC 81, 044608 (2010)