# **Superheavies:**

# 1. Theoretical models of formation dynamics (the problems to be solved)

- **Fusion reactions** (new SH elements and isotopes)
- Transfer reactions (new neutron-rich SH nuclei)
- Neutron capture (SHE in nature)

# **2. SHE experiments** (what could be really done within the next few years)

Valeriy Zagrebaev

Flerov Laboratory of Nuclear Reactions, JINR, Dubna for "Future of Super Heavy Elements", *May 14, 2012*, Weiltal, Germany

## **Synthesis of SHE in fusion reactions (conventional view)**



 $P_{xn}$ : Survival probability of excited CN (Statistical Model:  $\Gamma_n$ ,  $\Gamma_f$ ,  $E_n^{sep}$ ,  $B_{fis}$ )

#### $R(\vec{\beta}, \theta) = \tilde{R} \cdot \left(1 + \sum_{\lambda > 2} \beta_{\lambda} Y_{\lambda 0}(\theta, 0)\right)$ **Capture cross section** $\mathbf{r}$ (Channel Coupling $\widetilde{R} = Ro/[1 + \frac{3}{4\pi} \sum_{\lambda} \beta_{\lambda}^{2} + ...]^{1/3}$ approach) R₁(β₁,θ₁) $R_2(\vec{\beta}_2, \theta_2)$ $V_{12}(r;\vec{\beta}_{1},\theta_{1},\vec{\beta}_{2},\theta_{2}) = V_{C}(r;\vec{\beta}_{1},\theta_{1},\vec{\beta}_{2},\theta_{2}) + V_{N}(r;\vec{\beta}_{1},\theta_{1},\vec{\beta}_{2},\theta_{2}) + \frac{1}{2}\sum_{i}\sum_{l}C_{i\lambda}\cdot\beta_{i\lambda}^{2}$ $H = -\frac{\hbar^2 \nabla_r^2}{2\mu} + V_C(r; \vec{\beta_1}, \theta_1, \vec{\beta_2}, \theta_2) + V_N(r; \vec{\beta_1}, \theta_1, \vec{\beta_2}, \theta_2) + \sum_{i=1,2} \frac{\hbar^2 \hat{I}_i^2}{2 J_i} + \sum_{i=1,2} \sum_{\lambda \ge 2} \left( -\frac{1}{2d_{i\lambda}} \frac{\partial^2}{\partial s_{i\lambda}^2} + \frac{1}{2} c_{i\lambda} s_{i\lambda}^2 \right)_{i\lambda}$ $H\Psi = E\Psi$ $H_{\text{int}}\phi_{\nu}(\vec{\alpha}) = \varepsilon_{\nu}\phi_{\nu}(\vec{\alpha})$ $y_{l,v}'' - \frac{l(l+1)}{r^2} + \frac{2\mu}{\hbar^2} \Big[ E - \varepsilon_v - V_{vv}(r) \Big] y_{l,v} - \sum_{u \neq v} \frac{2\mu}{\hbar^2} V_{v\mu}(r) y_{l,\mu} = 0$ boundary conditions: $y_{l,\nu}(r \to \infty) = \frac{i}{2} \left[ h_l^{(-)}(\eta_{\nu}, k_{\nu}r) \cdot \delta_{\nu 0} - \left(\frac{k_0}{k_{\nu}}\right)^{1/2} S_{\nu 0}^{l} \cdot h_l^{(+)}(\eta_{\nu}, k_{\nu}r) \right]$ $\sigma_{\text{fus}}(E) = \frac{\pi}{k_0^2} \sum_{l=0}^{\infty} (2l+1) \cdot P_l(E)$ $y'_{l\nu}(r < R_{\text{fus}}) \sim -ik_{l,\nu}y_{l\nu}(r)$ incoming flux in channel v: CCFULL code (Hagino, Rowley, Kruppa) $j_{l,v} = -i\frac{\hbar}{2\pi} (y_{l,v} \frac{dy_{l,v}^*}{dr} - y_{l,v}^* \frac{dy_{l,v}}{dr}) \Big|_{r \le R_{even}} \qquad P_l(E) = \sum_{v} \frac{j_{l,v}}{j_0} y_{l,v}$ NRV-codes: Fusion-CC (Zagrebaev, Samarin) Web: http://nrv.jinr.ru/nrv 3

### **Capture cross section (Empirical Channel Coupling approach)**



4

#### **Triumph of Theory**



# **Cooling (survival) of excited compound nucleus (Statistical Model)**



**Survival probability:**  $CN(E_0^*, J_0) \rightarrow EvR(g.s.) + xn + N\gamma$ 

$$P_{xn} = \int_{0}^{E_{0}^{*}-E_{n}^{sep}(1)} \left(E_{0}^{*},J_{0}\right) P_{n}(E_{0}^{*},e_{1}) de_{1} \int_{0}^{E_{1}^{*}-E_{n}^{sep}(2)} \left(E_{1}^{*},J_{1}\right) P_{n}(E_{1}^{*},e_{2}) de_{2} \cdots \int_{0}^{E_{1}^{*}-E_{n}^{sep}(x)} \left(E_{x-1}^{*},J_{x-1}\right) P_{n}(E_{x-1}^{*},e_{x}) G_{N\gamma}(E_{x}^{*},J_{x}\rightarrow g.s.) de_{x}$$

Cross section for formation of evaporation residues:

$$\sigma_{\mathsf{EvR}}^{\mathsf{Xn}}(E) = \frac{\pi}{k^2} \sum_{\ell} (2\ell + 1) P(E, \ell) \cdot P_{\mathsf{CN}}(E^{\star}, \ell) \cdot P_{\mathsf{Xn}}(E^{\star}, \ell)$$

6 http://nrv.jinr.ru/nrv/Statistical Model

#### **Decay widths and survival probability**



#### **Triumph of Theory for SHE formation in very asymmetric fusion reactions**



#### Lack of Theory for SHE formation in more symmetric fusion reactions



9

#### Two (quite opposite) theoretical approaches for calculation of CN formation



10

two individual (frozen) nuclei

# What is behavior of valence nucleons at near-barrier collisions of HI ?

(Zagrebaev, Samarin and Greiner, PRC 2007)

Time-dependent Schrödinger equation shows that at low-energy collisions nucleons do not "jump" from one nucleus to another. Wave functions of valence nucleons follow the *two-center molecular states* spreading over both nuclei.

Two-Center Shell Model +
 Adiabatic Potential Energy Surface +
 Transport (Langevin type) Equations of Motion are appropriate for description

of low-energy nucleon rearrangement



### **CN formation probability in cold fusion reactions**



#### "Cold" and "Hot" synthesis of SHE



13

### **Predictive power of the theory for the hot fusion reactions**



looks quite impressive, but...

 $\frac{dR}{dR} = \frac{p_R}{p_R}$ Variables: {R,  $\theta$ ,  $\phi_1$ ,  $\phi_2$ ,  $\beta_1$ ,  $\beta_2$ ,  $\eta_7$ ,  $\eta_N$ }  $\frac{\frac{d\theta}{d\theta}}{\frac{d\theta}{dt}} = \frac{\frac{\mu_R}{\mu_R}}{\frac{\ell}{\mu_R R^2}}$ Most uncertain parameters:  $\mu_0, \gamma_0$  - nuclear viscosity and friction,  $\lambda_Z^0$  ,  $\lambda_N^0$  - nucleon transfer rate  $\frac{d\varphi_1}{dt} = \frac{L_1}{\mathfrak{I}_1}, \ \frac{d\varphi_2}{dt} = \frac{L_2}{\mathfrak{I}_2}$  $\eta = \frac{A_{1} - A_{2}}{A_{1} + A_{2}}$  $\eta_{Z} = \frac{Z_{1} - Z_{2}}{Z_{1} + Z_{2}}$ φ1  $\frac{d\beta_1}{dt} = \frac{p_{\beta 1}}{\mu_{\beta 1}}$ R A<sub>1</sub>  $\mu_{B1}$ b θ.  $\frac{d\beta_2}{dt} = \frac{p_{\beta 2}}{\mu_{\beta 2}}$  $\eta_{N} = \frac{N_{1} - N_{2}}{N_{1} + N_{2}}$  $\langle \varphi_2 \rangle$ Α2  $\frac{d\eta_{z}}{dt} = \frac{2}{Z_{\rm CN}} D_{\rm Z}^{(1)} + \frac{2}{Z_{\rm CN}} \sqrt{D_{\rm Z}^{(2)}} \Gamma_{\rm Z} (t)$  $\lambda_{\mathbf{Z}}^{\mathbf{0}} = \lambda_{\mathbf{N}}^{\mathbf{0}} = \frac{\lambda_{\mathbf{Q}}^{\mathbf{0}}}{2}$  $\frac{d\eta_{\rm N}}{dt} = \frac{2}{N_{\rm CN}} D_{\rm N}^{(1)} + \frac{2}{N_{\rm CN}} \sqrt{D_{\rm N}^{(2)}} \ \Gamma_{\rm N} (t)$  $\frac{dp_R}{dt} = -\frac{\partial V}{\partial R} + \frac{\ell^2}{\mu_R R^3} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right)\frac{\partial \mu_R}{\partial R} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2}\frac{\partial \mu_{\beta_1}}{\partial R} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2}\frac{\partial \mu_{\beta_2}}{\partial R} - \gamma_R \frac{p_R}{\mu_R} + \sqrt{\gamma_R T}\Gamma_R(t)$  $\frac{d\ell}{dt} = -\frac{\partial V}{\partial 9} - \gamma_{\text{tang}} \left( \frac{\ell}{\mu_{\text{n}}R} - \frac{L_{1}}{\Im_{1}}a_{1} - \frac{L_{2}}{\Im_{2}}a_{2} \right) R + \sqrt{\gamma_{\text{tang}}T}\Gamma_{\text{tang}}(t)$  $\frac{dL_1}{dt} = -\frac{\partial V}{\partial \varphi_1} + \gamma_{\text{tang}} \left( \frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_1 - \frac{a_1}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$  $\frac{dL_2}{dt} = -\frac{\partial V}{\partial \varphi_2} + \gamma_{\text{tan}} \left( \frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_2 - \frac{a_2}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$  $\frac{dp_{\beta_1}}{dt} = -\frac{\partial V}{\partial \beta_1} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_1} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_1} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_1} - \gamma_\beta \frac{p_{\beta_1}}{\mu_{\beta_1}} + \sqrt{\gamma_{\beta_1} T} \Gamma_{\beta_1}(t)$  $\frac{dp_{\beta_2}}{dt} = -\frac{\partial V}{\partial \beta_2} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_2} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_2} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_2} - \gamma_\beta \frac{p_{\beta_2}}{\mu_{\beta_2}} + \sqrt{\gamma_{\beta_2} T} \Gamma_{\beta_2}(t)$ 

15

## $^{48}Ca + ^{248}Cm$ collisions at $E_{cm} = 203$ MeV (quasi-fission)



16

### Fusion of "fission fragments": ${}^{136}Xe + {}^{136}Xe \rightarrow {}^{272}108$ (theoretical troubles)



# Synthesis of SHE in **fusion reactions** (theoretical problems to be solved)

1. Capture (contact) reaction stage

standard CC calculation:

- $\rightarrow$  no problems with predictions of capture cross sections (within factor 2 or 3)
- 2. CN formation stage

two-center shell model and transport equations:

- explicit potential energy surface?
- appropriate degrees of freedom and equations of motion?
- nuclear viscosity?
- nucleon transfer rate?
- $\rightarrow$  uncertainty factor may vary from 10 to 1000
- 3. Cooling stage

standard Statistical Model calculation:

- collective enhancement factor in level density?
- damping of shell corrections and fission barrier?
- unknown fission barriers for SH nuclei?
- $\rightarrow$  uncertainty factor is about 10

Synthesis of SHE in **transfer reactions:** Which models are on the market?

1. Semiclassical Model: code GRAZING

A. Winther, 2005
Good agreement with experiment for few-nucleon transfers
and quasi-elastic excitations (grazing collisions).
Does not describe properly deep inelastic scattering and multi-nucleon transfers.

2. Quantum Molecular Dynamics

*J. Tian et al.*, 2008, *Z.Q.Feng et al.*, 2009 **Only 2 or 3 papers on SHE formation have been published so far.** 

#### 3. TDHF calculations

C. Simenel et al., 2010 Mostly qualitative results. Cross sections for SHE production were not obtained yet.

#### 4. Macroscopic transport equations

Zagrebaev & Greiner, 2005 Poor description of quasi-elastic scattering and few-nucleon transfers. Appropriate description of deep inelastic scattering and multi-nucleon transfers.

#### Satisfactory agreement with experiment



#### **Underestimation of "anti-symmetrizing" dynamics**



# Production of transfermium nuclei along the line of stability looks quite possible



# Synthesis of SHE in **transfer reactions** (theoretical problems to be solved)

1. Microscopic (and semi-microscopic) models need further development:

The models should be applied first to description of numerous experimental data on deep inelastic scattering and multi-nucleon transfers in low energy HI collisions

2. Macroscopic (classical) approaches:

There are several uncertain parameters and quantities:

- too many important degrees of freedom,
- explicit adiabatic potential energy surface?
- appropriate equations of motion?
- nuclear viscosity?
- nucleon transfer rate?
- 3. Decay of excited heavy (and superheavy) primary fragments: standard Statistical Model calculation:
  - collective enhancement factor in level density?
  - damping of shell corrections and fission barrier?
  - unknown fission barriers for SH nuclei?
  - $\rightarrow$  uncertainty factor is about 10



Next generation of pulsed reactors: We need factor 1000 only !



### **Formation of SH elements in astrophysical r-process**



**Strong neutron fluxes** are expected to be generated by neutrino-driven proto-neutron star winds which follow **core-collapse supernova explosions** or by the **mergers of neutron stars.** 

The question: How large is the neutron flux?





## Formation of SH elements in astrophysical r-process: fit of unknown neutron fluence



atomic number

Unknown total neutron fluence is adjusted in such a way that the ratios Th/Pb and U/Pb keep its experimental values.

# Formation of SH elements in astrophysical r-process



# Synthesis of SHE by **neutron capture** in r process ("experimental" problems to be solved)

- 1. Equations are well defined.
- 2. Neutron capture cross sections and decay properties of heavy neutron rich nuclei are unknown:
  - only theoretical estimations,
  - most uncertain are the fission half-lives,
  - beta(-) decay half-lives are also unknown.
- 3. Neutron fluence ?
  - adjusted to reproduce experimental abundances?

# **SHE experiments**

# What new could be done within the next few years?

Valeriy Zagrebaev

Flerov Laboratory of Nuclear Reactions, JINR, Dubna for "Future of Super Heavy Elements", *May 14, 2012*, Weiltal, Germany

# **Beyond <sup>48</sup>Ca:** <sup>50</sup>Ti and <sup>54</sup>Cr induced fusion reactions



Probably these elements are the last ones which will be synthesized in the nearest future

#### We are still far from the island of stabilty





### The gap in SH mass area must be filled somehow



### **Our ability of predictions in superheavy mass area**



### It is easier to fill the gap from above



# Cross sections are high enough to perform experiments at available facilities just now



# Use of low-energy Radioactive Ion Beams for production of neutron rich superheavy nuclei ?



No chances today and in the nearest future 38

# Multi-nucleon transfer for production of superheavies: U-like beams give us more chances to produce neutron rich SH nuclei in transfer reactions



# Production of transfermium nuclei along the line of stability looks quite possible



# Narrow pathway to the island of stability just by fusion reactions !



# **Experiments for the next several years:**

- Elements 119 and 120 may be really synthesized in the Ti and/or Cr fusion reactions with cross sections of about 0.05 0.02 pb. Perhaps they are the heaviest SH elements with  $T_{1/2} > 1 \ \mu s$ ? (beam time: 0.5 year + 0.5 year)
- The gap in SH mass area (Z=106 116) can be easily filled in fusion reactions of 48Ca with lighter isotopes of actinides (239Pu, 241Am, 243Cm, ...).
   (beam time: one weak for one decay chain of a new SH isotope)
- The narrow pathway to the island of stability is found at last ! (beam time: 20 days to check the idea)
- Multi-nucleon transfer reactions have to be used for synthesis of neutron enriched long-living SH nuclei located along the beta-stability line. 48Ca and 136Xe beams are insufficient. Uranium-like beam is needed !
   (beam time: one day for one new neutron-rich isotope of Fm, Md, No...)



Walter Greiner and Alexander Karpov

