Production of heavy neutron-rich nuclei by multi-nucleon transfer reactions

- State of the art: neutron rich heavy nuclei were not synthesized yet
- **Outline of the model** (3 slides only)
- Low-energy multi-nucleon transfer reactions:
 - Production of trans-target nuclei
 - Shell effects in damped collisions of heavy ions ?
 - Production of neutron rich nuclei located along the neutron closed shell N=126
 - Synthesis of neutron rich transfermium nuclei
- New setup for selective laser ionization of heavy neutron rich nuclei
- Summary

Valeriy Zagrebaev

Flerov Laboratory of Nuclear Reactions, JINR, Dubna

for "Colloque GANIL 2013", September 25, 2013, Port-en-Bessin, France

Mostly proton-rich nuclei were studied so far in the upper part of the nuclear map

SHE: we are far from the stability line and from the Island of Stability

There are only 3 methods for synthesis of heavy nuclei

1. Fusion reactions: \rightarrow proton rich heavy nuclei

2. Sequence of neutron capture and beta(-) decay processes: neutron fluxes in reactors are too low, nuclear explosions are forbidden

Theoretical models of transfer reactions

Multi-nucleon transfers in damped collisions

Master equation L.G. Moretto and J.S. Sventek, Phys. Lett. B **58**, 26 (1975)

Fokker-Plank equation

W. Norenberg, Phys. Lett. B 52, 289 (1974)

Langevin equations

P. Frobrich and S.Y. Xu, Nucl. Phys. A477, 143 (1988)

Semi-classical approaches

E. Vigezzi and A. Winther, Ann. Phys. (N.Y.) **192**, 432 (1989). V.I. Zagrebaev, Ann. Phys. (N.Y.) **197**, 33 (1990).

Few-nucleon transfers (GRAZING)

A. Winther, Nucl. Phys. **A594**, 203 (1995) http://personalpages.to.infn.it/nanni/grazing

Adiabatic dynamics of low-energy heavy ion collisions and nucleon transfers

 $\frac{dR}{dR} = \frac{p_R}{p_R}$ Variables: {R, θ , ϕ_1 , ϕ_2 , β_1 , β_2 , η_7 , η_N } $\frac{\frac{d\theta}{d\theta}}{\frac{d\theta}{dt}} = \frac{\frac{\mu_R}{\mu_R}}{\frac{\ell}{\mu_R R^2}}$ Most uncertain parameters: μ_0, γ_0 - nuclear viscosity and friction, λ_Z^0 , λ_N^0 - nucleon transfer rate $\frac{d\varphi_1}{dt} = \frac{L_1}{\mathfrak{I}_1}, \ \frac{d\varphi_2}{dt} = \frac{L_2}{\mathfrak{I}_2}$ $\eta = \frac{A_{1} - A_{2}}{A_{1} + A_{2}}$ $\eta_{Z} = \frac{Z_{1} - Z_{2}}{Z_{1} + Z_{2}}$ φ1 $\frac{d\beta_1}{dt} = \frac{p_{\beta 1}}{\mu_{\beta 1}}$ R A₁ μ_{B1} b θ. $\frac{d\beta_2}{dt} = \frac{p_{\beta 2}}{\mu_{\beta 2}}$ $\eta_{N} = \frac{N_{1} - N_{2}}{N_{1} + N_{2}}$ $\langle \varphi_2 \rangle$ Α2 $\frac{d\eta_{z}}{dt} = \frac{2}{Z_{\rm CN}} D_{\rm Z}^{(1)} + \frac{2}{Z_{\rm CN}} \sqrt{D_{\rm Z}^{(2)}} \Gamma_{\rm Z} (t)$ $\lambda_{\mathbf{Z}}^{\mathbf{0}} = \lambda_{\mathbf{N}}^{\mathbf{0}} = \frac{\lambda_{\mathbf{Q}}^{\mathbf{0}}}{2}$ $\frac{d\eta_{\rm N}}{dt} = \frac{2}{N_{\rm CN}} D_{\rm N}^{(1)} + \frac{2}{N_{\rm CN}} \sqrt{D_{\rm N}^{(2)}} \Gamma_{\rm N} (t)$ $\frac{dp_R}{dt} = -\frac{\partial V}{\partial R} + \frac{\ell^2}{\mu_R R^3} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right)\frac{\partial \mu_R}{\partial R} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2}\frac{\partial \mu_{\beta_1}}{\partial R} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2}\frac{\partial \mu_{\beta_2}}{\partial R} - \gamma_R \frac{p_R}{\mu_R} + \sqrt{\gamma_R T}\Gamma_R(t)$ $\frac{d\ell}{dt} = -\frac{\partial V}{\partial 9} - \gamma_{\text{tang}} \left(\frac{\ell}{\mu_{\text{B}}R} - \frac{L_{1}}{\Im_{1}}a_{1} - \frac{L_{2}}{\Im_{2}}a_{2} \right) R + \sqrt{\gamma_{\text{tang}}T}\Gamma_{\text{tang}}(t)$ $\frac{dL_1}{dt} = -\frac{\partial V}{\partial \varphi_1} + \gamma_{\text{tang}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_1 - \frac{a_1}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dL_2}{dt} = -\frac{\partial V}{\partial \varphi_2} + \gamma_{\text{tan}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_2 - \frac{a_2}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dp_{\beta_1}}{dt} = -\frac{\partial V}{\partial \beta_1} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_1} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_1} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_1} - \gamma_\beta \frac{p_{\beta_1}}{\mu_{\beta_1}} + \sqrt{\gamma_{\beta_1} T} \Gamma_{\beta_1}(t)$ $\frac{dp_{\beta_2}}{dt} = -\frac{\partial V}{\partial \beta_2} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_2} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_2} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_2} - \gamma_\beta \frac{p_{\beta_2}}{\mu_{\beta_2}} + \sqrt{\gamma_{\beta_2} T} \Gamma_{\beta_2}(t)$

7

Typical trajectory in the "distance-deformation-mass asymmetry" space (48Ca + 248Cm, E=210 MeV)

Simulation of experiment and cross sections

Dynamics: 10^{6} tested events (trajectories), Statistical model: 10^{-6} (3n), 10^{-7} (4n) survival probability cross sections up to 0.1 pb can be calculated

Comparison with experiments on multi-nucleon transfer

For the first time quantitative description of all the features of Deep Inelastic scattering was obtained

Quasi-Fission process: ⁴⁸Ca + ²⁴⁸Cm

Underestimation of the yield of trans-target nuclei ?

Shell effects in low-energy multi-nucleon transfer reactions ?

on-line Gd+W experiment started in Dubna on September 20

If the shell effects in transfer reactions will be confirmed it will open a door for the production of neutron rich Superheavy Elements in U+Cm collisions (inverse quasi-fission)

Production of new heavy nuclei in the region of N=126

proton transfer along the neutron closed shells: ${}^{136}Xe_{N=82} + {}^{208}Pb_{N=126} \rightarrow {}^{136+\Delta Z}X_{N=82} + {}^{208-\Delta Z}Y_{N=126} + Q \approx 0$ Reactions with Q \approx 0 are very favorable for proton transfer The use of 132Sn is even better !

Isotope production with radioactive beams, Dasso, Pollarolo, Winther, PRL 1994

Production of neutron rich heavy nuclei located along the last "waiting point" of astrophysical nucleosynthesis

238U + 248Cm. Primary fragments

Production of transfermium nuclei along the line of stability looks quite possible

Rather wide angular distribution of reaction fragments: separators of a new kind are needed

Selective laser ionization of Au & Hg atoms

Summary

- North-east part of the nuclear map is still "terra incognita". Heavy neutron rich nuclei are not synthesized and studied yet.
- Multi-nucleon transfer reactions can be used for synthesis of new neutron rich nuclei located along the closed neutron shell N=126 having the largest impact on the astrophysical r-process. Cross sections are higher than 1 μ b.
- Multi-nucleon transfer reactions can be used also for synthesis of new neutron enriched transfermium nuclei located along the beta-stability line. U-like beams are needed as well as a new kind of separators!
- Shell effects and dynamics of the "inverse quasi-fission processes" in HI damped collisions should be studied much better. There are several quite promising experiments to be perform just now.

Valeriy Zagrebaev (FLNR, Dubna)

Walter Greiner (FIAS, Frankfurt)

