Superheavies:

short-term experiments and far-reaching designs

- States of affairs (very short)
- Further prospects:

Pessimistic view

Valeriy Zagrebaev

Flerov Laboratory of Nuclear Reactions, JINR, Dubna for Symposium on Exciting Physics, *November 14, 2011*, Makutsi, SA

Nuclear Map in 2000

Synthesis of superheavy elements at FLNR (⁴⁸Ca induced fusion reactions with actinide targets)

Yu. Oganessian, V. Utyonkov, et al. + Livermore + Oak Ridge

Great progress in synthesis of superheavy nuclei within last 10 years

Approaching the Island of Stability

Drastic change in behavior of the cross sections (predictions of 2002)

Epoch of ⁴⁸Ca is almost over. How much is ⁵⁰Ti worse?

Beyond ⁴⁸Ca: ⁵⁰Ti and ⁵⁴Cr induced fusion reactions

Maybe these elements are the last ones which will be synthesized in nearest future !?

How can we synthesize superheavy nuclei?

- **1. Fusion reactions: beams of stable nuclei**
- 2. Fusion reactions with radioactive beams (e.g., ²²O+²⁴⁸Cm, ...)
- **3. Multi-nucleon transfer reactions**
- 4. Neutron capture processes

Use of low-energy Radioactive Ion Beams for production of neutron rich superheavy nuclei ?

~~

No chances today and in nearest future

Optimistic view of SHE future

First, we should darn the gap in superheavy mass area?

Our ability of predictions in superheavy mass area

It is easier to darn the gap from above

Cross sections are high enough to perform experiments at available facilities

Narrow pathway to the island of stability from the north-west side !

Multi-nucleon transfer for production of superheavies (choice of reaction is very important)

Only U-like beams give us a chance to produce neutron rich SH nuclei in transfer reactions

238U + 248Cm. Primary fragments

Study of transfermium nuclei along the line of stability becomes possible at last

Nucleosynthesis in reactors

Rapid neutron capture in nuclear explosions

How much could be enhancement in the yield of superheavies in multiple (one by one) nuclear explosions ? (the idea was already discussed by Edward Teller and his colleagues 40 years ago)

Multiple nuclear explosions (Edward Teller: Technically it is quite possible)

Probability for formation of element 112 increases by **90 orders** of magnitude !

Next generation of Pulsed Reactors: We need factor 1000 only !

Formation of SH elements in astrophysical r-process

Strong neutron fluxes are expected to be generated by neutrino-driven proto-neutron star winds which follow **core-collapse supernova explosions** or by the **mergers of neutron stars.**

The question: How large is the neutron flux?

Formation of SH elements in astrophysical r-process: fit of unknown neutron fluence

atomic number

Unknown total neutron fluence is adjusted in such a way that the ratios Th/Pb and U/Pb keep its experimental values.

Formation of SH elements in astrophysical r-process

Summary

- Elements 119 and 120 may be really synthesized in the Ti and/or Cr fusion reactions with cross sections of about 0.02 0.04 pb. Perhaps they are the last SH elements with $T_{1/2} > 1 \ \mu s$?
- The gap in SH mass area can be easily filled in fusion reactions of 48Ca with lighter isotopes of actinides.
- The narrow pathway to the island of stability is found at last !
- Multi-nucleon transfer reactions are to be used for synthesis of neutron enriched long-living SH nuclei close to beta-stability line. 48Ca and 136Xe beams are insufficient. Uranium-like beams are needed !
- A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced with the use of pulsed nuclear reactors of the next generation (factor 1000 is needed).
- Production of long-living SH nuclei in the astrophysical r-process looks not so much pessimistic: relative yield of SH / Pb is about 10⁻¹².

Alexander Karpov Igor Mishustin Walter Greiner (JINR, Dubna) (FIAS, Frankfurt) (FIAS, Frankfurt)

