CLUSTERING PHENOMENA IN SUPERHEAVY NUCLEAR SYSTEMS

- Shell structure of adiabatic potential energy of heavy nuclear system
- Clusterization and isomeric states of heavy nuclei
- Shell effects in collisions of heavy ions and SHE formation
- 3-body clusterization in collisions of transactinides

Valery Zagrebaev and Walter Greiner Strasbourg, May 15, 2008

This is not a subject of my talk

Diabatic and Adiabatic Potential Energy

 $V_{\text{diabat}}(R,\beta_1,\beta_2,\alpha,...) = V_{12}^{\text{folding}}(Z_1,N_1,Z_2,N_2;R,\beta_1,\beta_2,...) + M(A_1) + M(A_2) - M(\text{Proj}) - M(\text{Targ})$

 $V_{\text{adiabat}}(\mathsf{R},\beta_1,\beta_2,\alpha,...) = \mathsf{M}_{\mathsf{TCSM}}(\mathsf{R},\beta_1,\beta_2,\alpha,...) - \mathsf{M}(\mathsf{Proj}) - \mathsf{M}(\mathsf{Targ})$

Time - dependent driving potential has to be used $V(t) = V_{\text{diab}}(\xi) \cdot exp(-\frac{t_{\text{int}}}{\tau_{\text{relax}}}) + V_{\text{adiab}}(\xi) \cdot [1 - exp(-\frac{t_{\text{int}}}{\tau_{\text{relax}}})]$ $\tau_{\text{relax}} \sim 10^{-21} \text{ s}$ the same degrees of freedom !

Two-Center Shell Model

Calculation of multi-dimensional adiabatic potential energy ?

(1) Lack of standard macro-microscopic adiabatic potential

Time dependent adiabatic fusion-fission potential

 $V_{\text{adiab}}(r,\delta,\eta,\varepsilon,t) = V_{\text{adiab}}(r,\delta,\eta,\varepsilon=1) \cdot exp\left(-\frac{t}{\tau_{\varepsilon}}\right) + V_{\text{adiab}}(r,\delta,\eta,\varepsilon=\varepsilon_{\text{out}}) \cdot \left[1 - exp\left(-\frac{t}{\tau_{\varepsilon}}\right)\right]$

Time-dependent driving potential

Clusterization and Isomeric states of heavy nuclei

 $\frac{dR}{dt} = \frac{p_R}{\mu_R}$ Variables: {R, θ , ϕ_1 , ϕ_2 , β_1 , β_2 , η } $\frac{d\Theta}{dt} = \frac{\ell}{\mu_R R^2}$ Most uncertain parameters: μ_0, γ_0 - nuclear viscosity and friction. p1 λo - nucleon transfer rate $\frac{d\varphi_1}{dt} = \frac{L_1}{\Im_1}, \ \frac{d\varphi_2}{dt} = \frac{L_2}{\Im_2}$ φ1 $\frac{d\beta_1}{dt} = \frac{p_{\beta 1}}{\mu_{\beta 1}}$ 82 A₁ P b θ $\frac{d\beta_2}{d\beta_2} = \frac{p_{\beta 2}}{p_{\beta 2}}$ $\eta = \frac{A_1 - A_2}{A_1 + A_2}$ φ2 $dt \mu_{\beta 2}$ A2 $\frac{d\eta}{dt} = \frac{2}{A_{CN}} D_A^{(1)}(\eta) + \frac{2}{A_{CN}} \sqrt{D_A^{(2)}(\eta)} \Gamma_{\eta}(t)$ $\frac{dp_R}{dt} = -\frac{\partial V}{\partial R} + \frac{\ell^2}{\mu_R R^3} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right)\frac{\partial \mu_R}{\partial R} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2}\frac{\partial \mu_{\beta_1}}{\partial R} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2}\frac{\partial \mu_{\beta_2}}{\partial R} - \gamma_R \frac{p_R}{\mu_R} + \sqrt{\gamma_R T}\Gamma_R(t)$ $\frac{d\ell}{dt} = -\frac{\partial V}{\partial \vartheta} - \gamma_{\text{tang}} \left(\frac{\ell}{\mu_{p}R} - \frac{L_{1}}{\Im_{1}}a_{1} - \frac{L_{2}}{\Im_{2}}a_{2} \right) R + \sqrt{\gamma_{\text{tang}}T}\Gamma_{\text{tang}}(t)$ $\frac{dL_1}{dt} = -\frac{\partial V}{\partial \varphi_1} + \gamma_{\text{tang}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_1 - \frac{a_1}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dL_2}{dt} = -\frac{\partial V}{\partial \varphi_2} + \gamma_{\text{tan}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_2 - \frac{a_2}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dp_{\beta_1}}{dt} = -\frac{\partial V}{\partial \beta_1} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_1} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_1} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_1} - \gamma_\beta \frac{p_{\beta_1}}{\mu_{\beta_1}} + \sqrt{\gamma_{\beta_1} T} \Gamma_{\beta_1}(t)$ $\frac{dp_{\beta_2}}{dt} = -\frac{\partial V}{\partial \beta_2} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_2} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_2} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_2^2}\right) \frac{\partial \mu_R}{\partial \beta_2} - \gamma_\beta \frac{p_{\beta_2}}{\mu_R} + \sqrt{\gamma_{\beta_2} T} \Gamma_{\beta_2}(t)$

Multi-dimensional adiabatic driving potential

248 Cm + 48 Ca \leftrightarrow 296 116

Motion in multi-dimensional space

Deep-Inelastic Scattering

Quasi-fission process

Symmetric quasi-fission

Simulation of experiment and cross sections

Dynamics: 10^{6} tested events (trajectories), Statistical model: 10^{-6} (3n), 10^{-7} (4n) survival probability cross sections up to 0.1 pb can be calculated

Quasi-fission and fusion-fission processes

Cross sections for superheavy element production

On the way to the first Island of Stability

Synthesis of 117: ${}^{48}Ca + {}^{249}Bk \rightarrow {}^{297}117$ or ${}^{50}Ti + {}^{243}Am \rightarrow {}^{293}117$

0.01

30

35

40

45

240

5n

E* (MeV)

50

Synthesis of 120

Fusion of "fission fragments": ${}^{136}Xe + {}^{136}Xe \rightarrow {}^{272}108$ if OK then ${}^{132}Sn + {}^{176}Yb \rightarrow {}^{308}120$

Collision of very heavy (transactinide) nuclei ?

atomic mass number

Shell effects in damped collisions of transactinides. New way to superheavies

Comparison with available experimental data

Isotopic yield of SHE in collisions of transactinides

Shell effects in damped collisions ¹⁶⁰Gd + ¹⁸⁶W (proposal for a new experiment)

Spontaneous positron emission in super-strong electric field

W. Greiner, J. Reinhard, 1981

What are the triggers for a long reaction time ?

0.1

10-19

A ≤ 204

10-20

interaction time (seconds)

10-21

1000

100

10

0.1

10-21

and $\theta_{c.m.} < 70^{\circ}$

interaction time (seconds)

10-20

 $d\sigma/dlog(\tau)$ (mb/unit)

3 - Cluster Configurations ?

 $V(Z_1, Z_2, Z_3; R_{12}, R_{13}, \beta_1, \beta_2, \beta_3) = ?$

Clusterization in collisions of transactinides

Summary

- The **Shell effects** play an important role both in structure of heavy nuclei and in low-energy reactions (decay, fusion, fission, transfer, etc.).
- Multi-dimensional fusion-fission driving potential reveals local minima of the shape isomeric states, which are nothing else but two-cluster configurations with magic cores.
- Shell effects in low-energy damped collisions of transuranium nuclei may lead to a noticeable yield of long-lived neutron-rich SHE due to a large mass and charge rearrangement in the "inverse quasi-fission" process caused by the Z=82 and N=126 nuclear shells.
- Giant nuclear system formed in U+U-like collisions may live rather long (positron formation) and break to a 3-cluster configuration with two magic nuclei in the region of lead.
- There are several very promising possibilities for synthesis on new SH elements and isotopes. With titanium beam (instead of 48Ca) and actinide targets we may move upward to 120 element.
- Cross sections of SHE formation in symmetric fusion reactions (including neutron rich fission fragments) are estimated to be less than 1 pb.

Valery Zagrebaev and Walter Greiner for SOTANP, Strasbourg, May 15, 2008